Skip to main content
Log in

Lightweight ship target detection algorithm based on improved YOLOv5s

  • Research
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Accurate identification of ship targets is the key technology of intelligent inland waterway navigation. Given the complicated navigation environment of inland waterway ships and model detection's low accuracy and efficiency, this paper proposes an enhanced detection algorithm MGS-YOLO based on YOLOv5s. Firstly, the original backbone network is replaced by the MobileNetv3 algorithm, and the improved network parameter is only 7.54 MB. Secondly, the Gated Convolution (GnConv) structure is introduced into the original feature fusion module, which effectively improves the spatial interaction ability of feature information at different levels and further reduced the computational complexity of the model. Finally, to further improve the training speed and reasoning accuracy of the model, the SCYLLA-IoU (SIoU) is introduced into MGS-YOLO to effectively solve the problem of mismatching in the direction between the real box and the regression box. The final results show that the mean Average Precision (mAP), F1, and Average Frames Per Second (AVGFPS) of MGS-YOLO reach 0.977, 0.95, and 95.24 on the established ship dataset. It means that MGS-YOLO does not lose prediction accuracy when reducing network parameters and it has certain real-time performance. Comparing with the current representative lightweight learning models YOLOv5s, YOLOv3-tiny, YOLOv4-tiny, and YOLOv7 with good performance, the MGS-YOLO model has higher detection accuracy and efficiency and provides certain technical support for the safety detection and management of inland ships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are not publicly available, as the data also forms part of an ongoing study but are available from the corresponding author on reasonable request.

References

  1. Zheng, Y., Liu, P., Qian, L., Qin, S., Liu, X., Ma, Y., Cheng, G.: Recognition and depth estimation of ships based on binocular stereo vision. J. Mar. Sci. Eng. 10(8), 1153–1174 (2022)

    Article  Google Scholar 

  2. Lehtola, V., Montewka, J., Goerlandt, F., Guinness, R., Lensu, M.: Finding safe and efficient shipping routes in ice-covered waters: a framework and a model. Cold Reg. Sci. Technol. 165(2), 102795.1-102795.14 (2019)

    Google Scholar 

  3. Qian, L., Zheng, Y., Li, L., Ma, Y., Zhou, C., Zhang, D.: A new method of inland water ship trajectory prediction based on long short-term memory network optimized by genetic algorithm. Appl. Sci. 12(8), 4073–4088 (2022)

    Article  CAS  Google Scholar 

  4. Wei, J., He, J., Zhou, Y., Chen, K., Tang, Z., Xiong, Z.: Enhanced object detection with deep convolutional neural networks for advanced driving assistance. IEEE Trans. Intell. Transp. Syst. 21(4), 1572–1583 (2020)

    Article  Google Scholar 

  5. Liang, L., Lang, C., Li, Y., Feng, S., Zhao, J.: Fine-grained facial expression recognition in the wild. IEEE Trans. Inf. Forensics Secur. 16, 482–494 (2021)

    Article  Google Scholar 

  6. Sivachandiran, S., Jagan, M., Mohammed, N.: Deep learning driven automated person detection and tracking model on surveillance videos. Meas. Sens. 24, 100422 (2022)

    Article  Google Scholar 

  7. Sengupta, A., Jin, F., Zhang, R., Cao, S.: mm-Pose: real-time human skeletal posture estimation using mmWave radars and CNNs. IEEE Sens. J. 20(17), 10032–10044 (2020)

    Article  ADS  Google Scholar 

  8. Liang, X., Jia, X., Huang, W., He, X., Li, L., Fan, S., Li, J., Zhao, C., Zhang, C.: Real-Time grading of defect apples using semantic segmentation combination with a pruned YOLOv4 network. Foods 11(19), 3150–3150 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun, L., Xu, Y., Rao, Z., Chen, J., Liu, Z., Lu, N.: YOLO algorithm for long-term tracking and detection of escherichia coli at different depths of microchannels based on microsphere positioning assistance. Sensors 22(19), 7454–7454 (2022)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Ding, B., Zhang, Z., Liang, Y., Wang, W., Hao, S., Meng, Z., Guan, L., Hu, Y., Guo, B., Zhao, R., Lv, Y.: Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm. Ann. Transl. Med. 9(21), 1622–1622 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yao, Y., Jiang, Z., Zhang, H., Zhao, D., Cai, B.: Ship detection in optical remote sensing images based on deep convolutional neural networks. J. Appl. Remote. Sens. 11(04), 1–1 (2017)

    Article  ADS  Google Scholar 

  12. Dai, H., Du, L., Wang, Y., Wang, Z.: A modified CFAR algorithm based on object proposals for ship target detection in SAR images. IEEE Geosci. Remote Sens. Lett. 13(12), 1925–1929 (2016)

    Article  ADS  Google Scholar 

  13. Zhao, H., Zhang, W., Sun, H., Xue, B.: Embedded deep learning for ship detection and recognition. Future Internet 11(2), 53 (2019)

    Article  CAS  Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  PubMed  Google Scholar 

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A., IEEE.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, pp. 779–788 (2016)

  16. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.C.: SSD: single shot MultiBox detector. In: 14th European Conference on Computer Vision (ECCV), Amsterdam, Netherlands, pp. 21–37 (2016)

  17. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: transformers for image recognition at scale.arXiv preprint arXiv:2010.11929 (2020)

  18. Li, H., Deng, L., Yang, C., Liu, J., Gu, Z.: Enhanced YOLOv3 tiny network for real-time ship detection from visual image. IEEE Access 9(99), 1–1 (2021)

    CAS  Google Scholar 

  19. Chen, D., Sun, S., Lei, Z., Shao, H., Wang, Y.: Ship target detection algorithm based on improved YOLOv3 for maritime image. J. Adv. Transport. 2021(10), 1–11 (2021)

  20. Han, X., Zhao, L., Ning, Y., Hu, J.: ShipYOLO: an enhanced model for ship detection. J. Adv. Transport. 2021, 1–11 (2021)

    CAS  Google Scholar 

  21. Zhou, S. Y., Yin, J.: YOLO-ship: a visible light ship detection method. In: 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). IEEE (2022)

  22. Zhao, M., Sun, D.: An anchor-free object detection network for arbitrarily-orientated ships in large-scale remote sensing images. Remote Sens. Lett. 12(12), 1184–1193 (2021)

    Article  Google Scholar 

  23. Zhang, M., Rong, X., Yu, X.: Light-SDNet: a lightweight CNN architecture for ship detection. IEEE Access 10, 86647–86662 (2022)

    Article  Google Scholar 

  24. Tian, L., Cao, Y., He, B., Zhang, Y., He, C., Li, D.: Image enhancement driven by object characteristics and dense feature reuse network for ship target detection in remote sensing imagery. Remote Sens. 13(7), 1327–1327 (2021)

    Article  ADS  Google Scholar 

  25. Wang, C., Liao, H., Wu, H., Chen, P., Hsieh, J., Yeh, I., IEEE Comp, S.: CSPNet: a new backbone that can enhance learning capability of CNN. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Electr Network, pp. 1571–1580 (2020)

  26. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, pp. 346–361 (2014)

  27. Lin, T., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S., IEEE.: Feature pyramid networks for object detection. In: 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 936–944 (2017)

  28. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., IEEE.: Path aggregation network for instance segmentation. In: 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, pp. 8759–8768 (2018)

  29. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D., Assoc Advancement Artificial, I.: Distance-IoU loss: faster and better learning for bounding box regression. In: 34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, NY, pp. 12993–13000 (2020)

  30. Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q., Adam, H., IEEE.: Searching for MobileNetv3. In: IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, SOUTH KOREA, pp. 1314–1324 (2019)

  31. Howard A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  32. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L., IEEE.: MobileNetv2: inverted residuals and linear bottlenecks. In: 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, pp. 4510–4520 (2018)

  33. Chollet, F., IEEE.: Xception: deep learning with depthwise separable convolutions. In: 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 1800–1807 (2017)

  34. Hu, J., Shen, L., Sun, G., IEEE.: Squeeze-and-excitation networks. In: 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, pp. 7132–7141 (2018)

  35. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., Polosukhin, I.: Attention is all you need. In: 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA (2017)

  36. Rao, Y., Zhao, W., Tang, Y., Zhou, J., Lim, S., Lu, J.: HorNet: efficient high-order spatial interactions with recursive gated convolutions. arXiv preprint arXiv:2207.14284 (2022)

  37. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T., IEEE.: Free-form image inpainting with gated convolution. In: IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, SOUTH KOREA, pp. 4470–4479 (2019)

  38. Gevorgyan, Z.: SIoU loss: more powerful learning for bounding box regression. arXiv preprint arXiv:2205.12740 (2022)

  39. Shao, Z., Wu, W., Wang, Z., Du, W., Li, C.: SeaShips: a large-scale precisely annotated dataset for ship detection. IEEE Trans. Multimedia 20(10), 2593–2604 (2018)

    Article  Google Scholar 

  40. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  41. Wang, C., Bochkovskiy, A., Liao, H., IEEE Comp, S.O.C.: Scaled-YOLOv4: scaling cross stage partial network. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Electr Network, pp. 13024–13033 (2021)

  42. Wang, C., Bochkovskiy, A., Liao, H.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696 (2022)

Download references

Funding

This work was funded by National Natural Science Foundation of China with Grant number 51979215 and 52171350.

Author information

Authors and Affiliations

Authors

Contributions

LQ: Conceptualization, Formal analysis,Methodology, review and editing, Manuscript writing, original draft preparation. YZ: Conceptualization and Funding acquisition, review and editing. JC: Formal analysis,Methodology and Data curation, review and editing. YM: Data curation,Methodology and validation. YZ and XL: Data curation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuanzhou Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Zheng, Y., Cao, J. et al. Lightweight ship target detection algorithm based on improved YOLOv5s. J Real-Time Image Proc 21, 3 (2024). https://doi.org/10.1007/s11554-023-01381-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-023-01381-w

Keywords

Navigation