Skip to main content
Log in

Cross-CBAM: a lightweight network for real-time scene segmentation

  • Research
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Real-time semantic segmentation poses a significant challenge in scene parsing. Despite traditional semantic segmentation networks have made remarkable leap-forwards in semantic accuracy, the performance of inference speed remains unsatisfactory. This paper introduces the Cross-CBAM network, a novel lightweight architecture designed for real-time semantic segmentation. Specifically, a Squeeze-and-Excitation Atrous Spatial Pyramid Pooling Module (SE-ASPP) is proposed to obtain variable field-of-view and multiscale information. Additionally, we propose a Cross Convolutional Block Attention Module (CCBAM), wherein a cross-multiply operation guides low-level detail information with high-level semantic information. Unlike previous approaches that leverage attention to concentrate on the relevant information in the backbone, CCBAM utilizes cross-attention for feature fusion within the Feature Pyramid Network (FPN) structure. Extensive experiments on the Cityscapes dataset and Camvid dataset demonstrate the effectiveness of the proposed Cross-CBAM model by achieving a promising trade-off between segmentation accuracy and inference speed. On the Cityscapes test set, we achieve 73.4% mIoU with a speed of 240.9 FPS and 77.2% mIoU with a speed of 88.6 FPS on NVIDIA GTX 1080Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  2. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vis. 127(3), 302–321 (2019)

    Article  Google Scholar 

  3. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: European Conference on Computer Vision, Springer, pp. 740–755 (2014)

  4. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

  5. Wu, Y., Kong, Q., Zhang, L., Castiglione, A., Nappi, M., Wan, S.: Cdt-cad: context-aware deformable transformers for end-to-end chest abnormality detection on X-ray images. IEEE/ACM Trans. Comput. Biol. Bioinform. (2023). https://doi.org/10.1109/TCBB.2023.3258455

    Article  Google Scholar 

  6. Wu, Y., Cao, H., Yang, G., Lu, T., Wan, S.: Digital twin of intelligent small surface defect detection with cyber-manufacturing systems. ACM Trans. Internet Technol. 23(4), 1–20 (2023)

    Article  Google Scholar 

  7. Wu, Z., Shen, C., Hengel, A.V.D.: Real-time semantic image segmentation via spatial sparsity. arXiv preprint arXiv:1712.00213 (2017)

  8. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  9. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

  10. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: Icnet for real-time semantic segmentation on high-resolution images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 405–420 (2018)

  11. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

  12. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

  13. Fan, M., Lai, S., Huang, J., Wei, X., Chai, Z., Luo, J., Wei, X.: Rethinking bisenet for real-time semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9716–9725 (2021)

  14. Hung, S.-W., Lo, S.-Y., Hang, H.-M.: Incorporating luminance, depth and color information by a fusion-based network for semantic segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP), IEEE, pp. 2374–2378 (2019)

  15. Li, X., You, A., Zhu, Z., Zhao, H., Yang, M., Yang, K., Tan, S., Tong, Y.: Semantic flow for fast and accurate scene parsing. In: European Conference on Computer Vision, Springer, pp. 775–793 (2020)

  16. Song, Q., Mei, K., Huang, R.: Attanet: attention-augmented network for fast and accurate scene parsing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2567–2575 (2021)

  17. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

  19. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

  20. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

  22. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

  23. Wang, Y., Zhou, Q., Liu, J., Xiong, J., Gao, G., Wu, X., Latecki, L.J.: Lednet: A lightweight encoder-decoder network for real-time semantic segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP), IEEE, pp. 1860–1864 (2019)

  24. Peng, J., Liu, Y., Tang, S., Hao, Y., Chu, L., Chen, G., Wu, Z., Chen, Z., Yu, Z., Du, Y., et al.: Pp-liteseg: a superior real-time semantic segmentation model. arXiv preprint arXiv:2204.02681 (2022)

  25. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

  26. Wu, Y., Zhang, L., Gu, Z., Lu, H., Wan, S.: Edge-ai-driven framework with efficient mobile network design for facial expression recognition. ACM Trans. Embed. Comput. Syst. 22(3), 1–17 (2023)

    Article  Google Scholar 

  27. Hu, J., Shen, L., Albanie, S., Sun, G., Vedaldi, A.: Gather-excite: exploiting feature context in convolutional neural networks. Adv. Neural Inform. Process. Syst. 31 (2018)

  28. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

  29. Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N.: Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. Int. J. Comput. Vis. 129(11), 3051–3068 (2021)

    Article  Google Scholar 

  30. Xiao, C., Hao, X., Li, H., Li, Y., Zhang, W.: Real-time semantic segmentation with local spatial pixel adjustment. Image Vis. Comput. 123, 104470 (2022)

    Article  Google Scholar 

  31. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  32. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P.H., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

  33. Li, Y., Li, M., Li, Z., Xiao, C., Li, H.: Correction to: Efrnet: efficient feature reuse network for real-time semantic segmentation. Neural Process. Lett. 55(1), 873–873 (2023)

    Article  Google Scholar 

  34. Dong, Y., Yang, H., Pei, Y., Shen, L., Zheng, L., Li, P.: Compact interactive dual-branch network for real-time semantic segmentation. Complex Intell. Syst. 9, 1–14 (2023)

    Article  Google Scholar 

  35. Xu, G., Li, J., Gao, G., Lu, H., Yang, J., Yue, D.: Lightweight real-time semantic segmentation network with efficient transformer and CNN. IEEE Trans. Intell. Transp. Syst. (2023). https://doi.org/10.1109/TITS.2023.3248089

    Article  Google Scholar 

  36. Meng, P., Jia, S., Li, Q.: Dmbr-net: deep multiple-resolution bilateral network for real-time and accurate semantic segmentation. Complex Intell. Syst. 9, 1–10 (2023)

    Article  Google Scholar 

  37. Guo, M.-H., Lu, C.-Z., Hou, Q., Liu, Z., Cheng, M.-M., Hu, S.-M.: Segnext: Rethinking convolutional attention design for semantic segmentation. arXiv preprint arXiv:2209.08575 (2022)

  38. Hong, Y., Pan, H., Sun, W., Jia, Y.: Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes. arXiv preprint arXiv:2101.06085 (2021)

  39. Hu, P., Caba, F., Wang, O., Lin, Z., Sclaroff, S., Perazzi, F.: Temporally distributed networks for fast video semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8818–8827 (2020)

  40. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

  41. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2009)

    Article  Google Scholar 

  42. Contributors, M.: MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. https://github.com/open-mmlab/mmsegmentation (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhao Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xu, Z., Gu, X. et al. Cross-CBAM: a lightweight network for real-time scene segmentation. J Real-Time Image Proc 21, 38 (2024). https://doi.org/10.1007/s11554-024-01414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-024-01414-y

Keywords

Navigation