Skip to main content
Log in

Agentenbasierte Modellierung urbaner Energiesysteme

Agent-based modeling of urban energy supply systems

  • WI - Schwertpunktaufsatz
  • Published:
WIRTSCHAFTSINFORMATIK

Kernpunkte

Agentenbasierte Energiesystemmodelle stellen einen innovativen Ansatz dar, mit dessen Hilfe die zukünftige Entwicklung urbaner Energiesysteme analysiert werden kann. Hierbei wird die Heterogenität der energiewirtschaftlichen Akteure ebenso erfasst wie die sich aus der vorhandenen Infrastruktur ergebenden technischen Restriktionen.

  • Agentenbasierte Energiesystemmodelle erlauben es, die Rahmenbedingungen, die durch die Liberalisierung der Energiemärkte, durch die Klimapolitik und durch die zunehmende Attraktivität dezentraler Technologien geschaffen wurden, in angemessener Art und Weise zu berücksichtigen.

  • Die Kopplung eines Agentenmodells mit einem zeitlich hoch aufgelösten Energiesystemoptimierungsmodell ermöglicht es, die Rückwirkung der Investitionsentscheidungen der energiewirtschaftlichen Akteure auf die Performance des Energieversorgungssystems zu erfassen.

  • Im Rahmen einer „Proof-of-Concept“-Anwendung konnten die Markteinführung dezentraler Technologien analysiert und die Nützlichkeit des Ansatzes nachgewiesen werden.

Abstract

The paper presents a novel agent-based modeling approach that is especially designed to investigate the future development of urban energy supply systems embedded in liberalized markets. Private energy investment decisions are modeled using representative agents exhibiting bounded rationality. A highly resolved energy system optimization model is combined with the agent model and applied to investigate the overall influence of the different investment decisions on the performance of the urban energy supply system. Within a proof of concept application, diffusion curves are derived that describe the time-dependent market penetration of competing energy saving and energy conversion technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Augenstein, E.; Herbergs, S.; Kuperjans, I.; Lucas, K.: Simulation of Industrial Energy Supply Systems with Integrated Cost Optimization. In: Proceedings of 18th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems. Trondheim, Norway 2005, S. 627–634.

  2. Barney, J. B.: Firm resources and sustained competitive advantage. In: Journal of Management 17 (1991), S. 99–120.

    Article  Google Scholar 

  3. Berger, T.: Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. In: Agricultural Economics 25 (2001), S. 245–260.

    Article  Google Scholar 

  4. Bourdieu, P.: Distinction of Taste: A Social Critique of the Judgment. Harvard University Press, Cambridge 1987.

    Google Scholar 

  5. Bower, J.; Bunn, D. W.; Wattendrup, C.: A model-based analysis of strategic consolidation in the German electricity industry. In: Energy Policy 29 (2001), S. 987–1005.

    Article  Google Scholar 

  6. Bruckner, T.: Dynamische Energie- und Emissionsoptimierung regionaler Energiesysteme. Doktorarbeit, Universität Würzburg, Würzburg 1997.

    Google Scholar 

  7. Bruckner, T.; Groscurth, H.-M.; Kümmel, R.: Competition and synergy between energy technologies in municipal energy systems. In: Energy — The International Journal 22 (1997), S. 1005–1014.

    Google Scholar 

  8. Bruckner, T.; Morrison, R.; Handley, C.; Patterson, M.: High-resolution modeling of energy-services supply systems using deeco: over-view and application to policy development. In: Annals of Operations Research 121 (2003), S. 151–180.

    Article  Google Scholar 

  9. Bruckner, T.; Morrison, R.; Wittmann, T.: Public policy modeling of distributed energy technologies: strategies, attributes, and challenges. In: Ecological Economics 54 (2005), S. 328–345.

    Article  Google Scholar 

  10. Casti, J. L.: Would-be Worlds. How Simulation is Changing the Frontiers of Science, Wiley, New York 1997.

    Google Scholar 

  11. Christensen, C. M.: The Innovator’s Dilemma. When New Technologies Cause Great Firms to Fail. Harper Business, New York 2000.

    Google Scholar 

  12. Epstein, J. M.; Axtell, R.: Growing Artificial Societies. The MIT Press, Cambridge 1996.

    Google Scholar 

  13. Ernst, A.; Schulz, C.; Schwarz, N.; Janisch, S.: Shallow and deep modelling of water use in a large, spatially explicit, coupled simulation system. In: Proceedings of the 3rd Conference of the European Social Simulation Association (ESSA), Koblenz 2005.

  14. Fishbone, L. G.; Abilock, H.: MARKAL, a linear-programming model for energy systems analysis: technical description of the BNL version. In: International Journal of Energy Research 5 (1981), S. 353–375.

    Article  Google Scholar 

  15. Freeman, C.; Soete, L.: The Economics of Industrial Innovation. Thomson Learning, London (1997).

    Google Scholar 

  16. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Entwurfsmuster. Addison Wesley Verlag, München 2004.

    Google Scholar 

  17. Groscurth, H.-M.; Bruckner, T.; Kümmel, R.: Modeling of energy-services supply systems. In: Energy — The International Journal 20 (1995), S. 941–958.

    Google Scholar 

  18. Grozev, G. V.: Can we simulate Australia’s National Electricity Market with the agent-based tool NEMCAS? In: Proc. of the International Conference on Optimization: Techniques and Applications (ICOTA), Ballarat, Australia 2004.

  19. Grübler, A.; Nakicenovic, N.; Victor, D. G.: Dynamics of energy technologies and global change. In: Energy Policy 34 (1999), S. 247–280.

    Article  Google Scholar 

  20. Hake, J. F.; Kleemann, M.; Kolb, G.: Klimaschutz durch energetische Sanierung von Gebäuden. In: Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment, Band 21, Jülich 1999.

    Google Scholar 

  21. Hu, X.: Understanding generators’ bidding strategies in Australia’s National Electricity Market. In: Proc. of the International Conference on Optimization: Techniques and Applications (ICOTA). Ballarat, Australia 2004.

  22. IPCC — Intergovernmental Panel on Climate Change: Fourth Assessment Report. Cambridge University Press, Cambridge 2007.

    Google Scholar 

  23. Lutzenhiser, L.: Social and behavioral aspects of energy use. In: Annual Review of Energy and Environment 18 (1993), S. 247–289.

    Article  Google Scholar 

  24. Messner, S.; Strubegger, M.: User’s Guide for MESSAGE III, WP-95-69, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria 1995.

    Google Scholar 

  25. Morrison, R.; Wittmann, T.; Heise, J.; Bruckner, T.: Policy-oriented Energy System Modeling with ‘xeona’. In: Proceedings of ECOS 2005 (18th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems): Shaping our Future Energy Systems, Trondheim, Norway 2005, S. 659–667.

  26. North, M.; Macal, C.; Cirillo, R.; Conzelmann, G.; Koritarov, V.; Thimmapuram, P.; Veselka, T.: Multi-agent modeling of electricity markets. In: Proceedings of Social Agents: Ecology, Exchange, and Evolution Conference. Chicago, USA 2002.

  27. Power UK. The Power UK Interview with Professor Stephen Littlechild. In: Power UK 141 (2005), S. 42–46.

    Google Scholar 

  28. Pfaffenberger W.; Sioshansi F. P.: Electricity Market Reform, An International Perspective. Elsevier, Amsterdam 2006.

    Google Scholar 

  29. Remme, U.; Goldstein, G. A.; Schellmann, U.; Schlenzig, C.: MESAP/TIMES — advanced decision support for energy and environmental planning. In: Operations Research Proceedings 2001 — Selected Papers of the International Conference on Operations Research, Duisburg 2002, S. 59–66.

  30. Roth, U.: Wechselwirkungen zwischen der Siedlungsstruktur und den Wärmeversorgungssystemen. Schriftreihe Raumordnung des Bundesministers für Raumordnung, Bauwesen und Städtebau, Bonn 1980.

    Google Scholar 

  31. Scheidt, M.; Jung, T.; Malinowski, P.: Integrated Power Station Operation Optimization — BoFiT and Vattenfall Europe Case Study. Beitrag zur Konferenz: The European Electricity Market, Lodz, Poland 2004. http://www.procom.de/de/products/bofit/publications. Abruf am 2007-06-29.

    Google Scholar 

  32. Seebregts, A. J.; Goldstein, G. A.; Smekens, K. E.: Energy/environmental modeling with the MARKAL family of models. In: Chamoni, P.; Leisten, R.; Martin, A.; Minnemann, J.; Stadtler, H. (Hrsg.): Operations Research Proceedings 2001 — Selected Papers of the International Conference on Operations Research, Duisburg 2002, S. 75–82.

  33. Stern, N.: The Economics of Climate Change: The Stern Review, Cambridge University Press, Cambridge 2006.

    Google Scholar 

  34. Stock, G.; Mertsch, R.: Betriebsoptimierung mit BoFiT am Beispiel eines Fernwärmeverbundnetzes. In: Euroheat & Power Fernwärme international 26 (1997), S. 565–572.

    Google Scholar 

  35. UN: World Urbanization Prospects. The 2005 Revision. Department of Economic and Social Affairs, Population Division, United Nations 2005.

    Google Scholar 

  36. Van der Voort, E.: Energy supply modeling package EFOM 12C MARK I. Vol. II (user’s guide) EUR 8896 EN, Vol III EUR 8896 EN (CEC), 1985.

  37. Veselka, T. D.; Boyd, G.; Conzelmann, G.; Koritarov, V.; Macal, C.; North, M.; Schoepfle, B.; Thimmapuram, P.: Simulating the behavior of electricity markets with an agent-based methodology: the Electric Market Complex Adaptive Systems (EMCAS) model. Vancouver, Canada 2002.

    Google Scholar 

  38. Wittmann, T.; Morrison, R.; Richter, J.; Bruckner, T.: A bounded rationality model of private energy investment decisions. In: Proceedings of the 29th IAEE International Conference: Securing Energy in Insecure Times. Potsdam 2006.

  39. Wittmann, T.: Agent-based Models of Energy Investment Decisions. Physica-Verlag Heidelberg, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Wittmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmann, T., Bruckner, T. Agentenbasierte Modellierung urbaner Energiesysteme. Wirtsch. Inform. 49, 352–360 (2007). https://doi.org/10.1007/s11576-007-0079-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11576-007-0079-5

Stichworte

Keywords

Navigation