Skip to main content

A multi-parametric programming approach for constrained dynamic programming problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, we present a new algorithm for solving complex multi-stage optimization problems involving hard constraints and uncertainties, based on dynamic and multi-parametric programming techniques. Each echelon of the dynamic programming procedure, typically employed in the context of multi-stage optimization models, is interpreted as a multi-parametric optimization problem, with the present states and future decision variables being the parameters, while the present decisions the corresponding optimization variables. This reformulation significantly reduces the dimension of the original problem, essentially to a set of lower dimensional multi-parametric programs, which are sequentially solved. Furthermore, the use of sensitivity analysis circumvents non-convexities that naturally arise in constrained dynamic programming problems. The potential application of the proposed novel framework to robust constrained optimal control is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apt Krzysztof R. (2003). Principles of Constraint Programming. Cambridge University Press, Cambridge

    Google Scholar 

  2. Başar T. and Olsder G.J. (1982). Dynamic Noncooperative Game Theory. Academic, London

    MATH  Google Scholar 

  3. Bazaraa M.S. and Shetty C.M. (1979). Nonlinear Programming—Theory and Algorithms. Wiley, New York

    MATH  Google Scholar 

  4. Bellman R. (2003). Dynamic Programming. Dover Publications, Mineola

    MATH  Google Scholar 

  5. Ben-Tal A. and Nemirovski A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. Ser. A 88: 411–424

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertsekas D.P. (2005). Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific, Belmont

    MATH  Google Scholar 

  7. Borrelli F., Bemporad A. and Morari M. (2003). Geometric algorithm for multiparametric linear programming. J. Optim. Theory Appl. 118(3): 515–540

    Article  MATH  MathSciNet  Google Scholar 

  8. Borrelli F., Batotić M., Bemporad A. and Morari M. (2005). Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41: 1709–1721

    Article  MATH  Google Scholar 

  9. Dua V., Bozinis A. and Pistikopoulos E.N. (2002). A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26: 715–733

    Article  Google Scholar 

  10. Dua V., Papalexandri K.P. and Pistikopoulos E.N. (2004). Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J. Glob. Optim. 30: 59–89

    Article  MATH  MathSciNet  Google Scholar 

  11. El-Ghaoui L. and Lebret H. (1997). Robust solutions to least-square problems with uncertain data matrices. SIAM J. Matrix Anal. Appl. 18: 1035–1064

    Article  MATH  MathSciNet  Google Scholar 

  12. Fiacco A.V. (1976). Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10: 287–311

    Article  MATH  MathSciNet  Google Scholar 

  13. Fiacco A.V. (1983). Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic, New York

    MATH  Google Scholar 

  14. Kouramas, K.I., Faísca, N.P., Rustem, B., Pistikopoulos, E.N.: Design of robust parametric controllers for constrained multi-stage optimization problems (to be submitted to Automatica) (2007)

  15. Lin X., Janak S.L. and Floudas C.A. (2004). A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty. Comput. Chem. Eng. 28(6–7): 1069–1085

    Article  Google Scholar 

  16. Mayne D.Q., Raković S.V., Findeisen R. and Allgöwer F. (2006). Robust output feedback model predictive control of contrained linear systems. Automatica 7(42): 1217–1222

    Article  Google Scholar 

  17. Pistikopoulos E.N., Georgiadis M.C. and Dua V. (2006). Multi-parametric programming: theory, algorithms, and applications, vol. 1. Wiley-VCH, Weinheim

    Google Scholar 

  18. Pistikopoulos E.N., Bozinis N.A., Bemporad A. and Morari M. (2000). On-line optimization via off-line parametric optimization tools. Comput. Chem. Eng. 24: 183

    Article  Google Scholar 

  19. Rawlings, J.B.: Tutorial: model predictive control technology. In: Proceedings of the American Control Conference, pp. 662–676. San Diego, USA (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios N. Pistikopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faísca, N.P., Kouramas, K.I., Saraiva, P.M. et al. A multi-parametric programming approach for constrained dynamic programming problems. Optimization Letters 2, 267–280 (2008). https://doi.org/10.1007/s11590-007-0056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-007-0056-3

Keywords