Abstract
Previous researches have disclosed that the excellent performance of some evolutionary algorithms (EAs) highly depends on existence of some properties in the structure of the objective function. Unlike classical benchmark functions, randomly generated multimodal functions do not have any of these properties. Having been improved, a function generator is utilized to generate a number of six benchmarks with random structure. Performance of some EAs is evaluated on these functions and compared to that evaluated on results from classical benchmarks, which are available in literature. The comparison reveals a considerable drop in the performance, even though some of these methods have all possible invariances. This demonstrates that in addition to properties, classical benchmarks have special patterns which may be exploited by EAs. Unlike properties, these patterns are not eliminated under linear transformation of the coordinates or the objective function; hence, limitations should be considered while generalizing performance of EAs on classical benchmarks to practical problems, where these properties or patterns do not necessarily exist.
Similar content being viewed by others
References
Liu X., Xu W.: A new filled function applied to global optimization. Comput. Oper. Res. 31, 61–80 (2004)
Csendes T., Pál L., Sendín J.O.H., Banga J.R.: The GLOBAL optimization method revisited. Optim. Lett. 2, 445–454 (2008)
Weise T.: Global Optimization Algorithms—Theory and Application. Thomas Weise, Kassel (2007)
Kima G.H., Yoona J.E., Ana S.H., Chob H.H., Kanga K.I.: Neural network model incorporating a genetic algorithm in estimating construction costs. Build. Environ. 39, 1333–1340 (2004)
Karaboga D., Basturk B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft. Comput. 8, 687–697 (2008)
Karaboga D., Basturk B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)
Karaboga D., Akay B.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)
Hansen N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds) Towards a New Evolutionary Computation—Advances on Estimation of Distribution Algorithms, pp. 75–102. Springer, Berlin (2006)
Ahrari, A., Saadatmand, M.R., Shariat-Panahi, M., Atai, A.A.: On the limitations of classical benchmark functions for evaluating robustness of evolutionary algorithms. Appl. Math. Comput. (2009). doi:10.1016/j.amc.2009.10.009
Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global optimization. In: Proceedings of IEEE International Swarm Intelligence Symposium, pp. 68–75 (2005)
Hansen N., Ostermeier A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)
Hansen, N., Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 57–64. Morgan Kaufmann, Pittsburgh (1995)
Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 Special Session on Real Parameter Optimization. Tech. Report, Nanyang Technological University (2005). Available at http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/Tech-Report-May-30-05.pdf
Salomon R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)
Akay, B., Karaboga, D.: Parameter tuning for the artificial bee colony algorithm. In: Proceeding of the First International Conference, ICCCI 2009, Wroclaw, Poland (2009)
Pardalos P.M., Romeijn H.E., Tuy H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)
He J., Reeves C., Witt C., Yao X.: A note on problem difficulty measures in black-box, optimization: classification, realizations and predictability. Evol. Comput. 15, 435–443 (2007)
Floudas C.A., Pardalos P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer, Berlin (1990)
Gaviano M., Lera D.: Test functions with variable attraction regions for global optimization problems. J. Global Optim. 13(2), 207–223 (1998)
Ahrari, A., Atai, A.A.: Grenade Explosion Method—A novel tool for optimization of multimodal functions. Appl. Soft Comput. (2009). doi:10.1016/j.asoc.2009.11.032
Ahrari A., Shariat-Panahi M., Atai A.A.: GEM: A novel evolutionary optimization method with improved neighborhood search. Appl. Math. Comput. 210, 376–386 (2009)
Gaviano M., Kvasov D.E., Lera D., Sergeyev Y.D.: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization. ACM T. Math. Softw. 29, 469–480 (2003)
Salamon P., Sibani P., Frost R.: Facts Conjectures and Improvements for Simulated Annealing. Society for Industrial and Applied Mathematics, Philadelphia (2002)
Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, pp. 1769–1776 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ahrari, A., Ahrari, R. On the utility of randomly generated functions for performance evaluation of evolutionary algorithms. Optim Lett 4, 531–541 (2010). https://doi.org/10.1007/s11590-010-0181-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-010-0181-2