Skip to main content

On the utility of randomly generated functions for performance evaluation of evolutionary algorithms

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Previous researches have disclosed that the excellent performance of some evolutionary algorithms (EAs) highly depends on existence of some properties in the structure of the objective function. Unlike classical benchmark functions, randomly generated multimodal functions do not have any of these properties. Having been improved, a function generator is utilized to generate a number of six benchmarks with random structure. Performance of some EAs is evaluated on these functions and compared to that evaluated on results from classical benchmarks, which are available in literature. The comparison reveals a considerable drop in the performance, even though some of these methods have all possible invariances. This demonstrates that in addition to properties, classical benchmarks have special patterns which may be exploited by EAs. Unlike properties, these patterns are not eliminated under linear transformation of the coordinates or the objective function; hence, limitations should be considered while generalizing performance of EAs on classical benchmarks to practical problems, where these properties or patterns do not necessarily exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu X., Xu W.: A new filled function applied to global optimization. Comput. Oper. Res. 31, 61–80 (2004)

    Article  MathSciNet  Google Scholar 

  2. Csendes T., Pál L., Sendín J.O.H., Banga J.R.: The GLOBAL optimization method revisited. Optim. Lett. 2, 445–454 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Weise T.: Global Optimization Algorithms—Theory and Application. Thomas Weise, Kassel (2007)

    Google Scholar 

  4. Kima G.H., Yoona J.E., Ana S.H., Chob H.H., Kanga K.I.: Neural network model incorporating a genetic algorithm in estimating construction costs. Build. Environ. 39, 1333–1340 (2004)

    Article  Google Scholar 

  5. Karaboga D., Basturk B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft. Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  6. Karaboga D., Basturk B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Karaboga D., Akay B.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hansen N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds) Towards a New Evolutionary Computation—Advances on Estimation of Distribution Algorithms, pp. 75–102. Springer, Berlin (2006)

    Google Scholar 

  9. Ahrari, A., Saadatmand, M.R., Shariat-Panahi, M., Atai, A.A.: On the limitations of classical benchmark functions for evaluating robustness of evolutionary algorithms. Appl. Math. Comput. (2009). doi:10.1016/j.amc.2009.10.009

  10. Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global optimization. In: Proceedings of IEEE International Swarm Intelligence Symposium, pp. 68–75 (2005)

  11. Hansen N., Ostermeier A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)

    Article  Google Scholar 

  12. Hansen, N., Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 57–64. Morgan Kaufmann, Pittsburgh (1995)

  13. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 Special Session on Real Parameter Optimization. Tech. Report, Nanyang Technological University (2005). Available at http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/Tech-Report-May-30-05.pdf

  14. Salomon R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)

    Article  Google Scholar 

  15. Akay, B., Karaboga, D.: Parameter tuning for the artificial bee colony algorithm. In: Proceeding of the First International Conference, ICCCI 2009, Wroclaw, Poland (2009)

  16. Pardalos P.M., Romeijn H.E., Tuy H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. He J., Reeves C., Witt C., Yao X.: A note on problem difficulty measures in black-box, optimization: classification, realizations and predictability. Evol. Comput. 15, 435–443 (2007)

    Article  Google Scholar 

  18. Floudas C.A., Pardalos P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer, Berlin (1990)

    MATH  Google Scholar 

  19. Gaviano M., Lera D.: Test functions with variable attraction regions for global optimization problems. J. Global Optim. 13(2), 207–223 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ahrari, A., Atai, A.A.: Grenade Explosion Method—A novel tool for optimization of multimodal functions. Appl. Soft Comput. (2009). doi:10.1016/j.asoc.2009.11.032

  21. Ahrari A., Shariat-Panahi M., Atai A.A.: GEM: A novel evolutionary optimization method with improved neighborhood search. Appl. Math. Comput. 210, 376–386 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gaviano M., Kvasov D.E., Lera D., Sergeyev Y.D.: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization. ACM T. Math. Softw. 29, 469–480 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Salamon P., Sibani P., Frost R.: Facts Conjectures and Improvements for Simulated Annealing. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    MATH  Google Scholar 

  24. http://www.lri.fr/~hansen/cmaes_inmatlab.html

  25. http://mf.erciyes.edu.tr/abc/software.htm

  26. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, pp. 1769–1776 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrari, A., Ahrari, R. On the utility of randomly generated functions for performance evaluation of evolutionary algorithms. Optim Lett 4, 531–541 (2010). https://doi.org/10.1007/s11590-010-0181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0181-2

Keywords