Skip to main content
Log in

Optimality conditions in terms of Bouligand derivatives for Pareto efficiency in set-valued optimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The aim of this paper is to present optimality conditions for Pareto efficiency of some set-valued optimization problems by means of Bouligand derivatives. The framework is that of general Banach spaces and the non-emptiness of the interior of the ordering cone in the output space is not assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkäuser, Basel (1990)

    MATH  Google Scholar 

  2. Bouligand H.: Sur les surfaces dépourvues de points hyperlimités. Ann. Soc. Polonaise Math. 9, 32–41 (1930)

    Google Scholar 

  3. Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann Oper Res 154(1), 29–50 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria. In: Springer, Series: Springer Optimization and Its Applications, vol. 17. Springer, New York (2008)

  5. Durea M.: First and second-order optimality conditions for set-valued optimization problems. Rendiconti del Circolo Matematico di Palermo 53, 451–468 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Durea, M., Strugariu, R.: On some Fermat rules for set-valued optimization problems. Optimization (accepted)

  7. Durea, M., Strugariu, R.: Quantitative results on openness of set-valued mappings and implicit multifunction theorems. Pacific J. Optim. (accepted)

  8. Halkin, H.: Mathematical programming without differentiability. Calculus of variations and control theory. In: Proceedings of Symposuim on Mathematical Research Center, University of Wisconsin, Madison, WI, 1975, pp. 279–287. Mathematical Research Center, University of Wisconsin, Publication No. 36. Academic Press, New York (1976)

  9. Halkin H.: Interior mapping theorem with set-valued derivatives. J. Anal. Math. 30, 200–207 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Halkin H., Neustadt L.W.: General necessary conditions for optimization problems. Proc. Natl. Acad. Sci. USA 56, 1066–1071 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. Loewen, P.D.: Limits of Fréchet normals in nonsmooth analysis. In: Ioffe, A., et al. (ed.) Optimization and Nonlinear Analysis, Pitman Research notes in Maths, vol. 244, pp. 178–188. Longman, Harlow (1992)

  12. Mordukhovich, B.S.: Variational analysis and generalized differentiation, vol. I: Basic Theory, vol. II: Applications. In: Grundlehren der Mathematischen Wissenschaften. A Series of Comprehensive Studies in Mathematics, vols. 330, 331. Springer, Berlin (2006)

  13. Penot J.-P.: Open mappings theorems and linearization stability. Numer. Funct. Anal. Appl. 8, 21–35 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Penot J.-P.: Subdifferential calculus without qualification assumptions. J. Convex Anal. 3(2), 1–13 (1996)

    MathSciNet  Google Scholar 

  15. Penot J.-P.: Compactness properties, openness criteria and coderivatives. Set-Valued Anal. 6, 363–380 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Robinson S.M.: Extension of Newton’s method to nonlinear functions with values in a cone. Numer. Math. 19, 341–347 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  17. Robinson S.M.: Normed convex processes. Trans. Am. Math. Soc. 174, 127–140 (1972)

    Article  Google Scholar 

  18. Severi F.: Su alcune questioni di topologia infinitesimale. Ann. Soc. Polonaise Math. 9, 97–108 (1931)

    Google Scholar 

  19. Ursescu C.: Tangency and openness of multifunctions in Banach spaces. Analele Ştiinţifice ale Universităţii “Al. I. Cuza” Iaşi 34, 221–226 (1988)

    MATH  MathSciNet  Google Scholar 

  20. Zălinescu C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  21. Zheng X.Y., Ng K.F.: The Fermat rule for multifunctions on Banach spaces. Math. Program. Ser. A 104, 69–90 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Strugariu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durea, M., Strugariu, R. Optimality conditions in terms of Bouligand derivatives for Pareto efficiency in set-valued optimization. Optim Lett 5, 141–151 (2011). https://doi.org/10.1007/s11590-010-0197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0197-7

Keywords

Navigation