Skip to main content
Log in

A Kronecker approximation with a convex constrained optimization method for blind image restoration

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In many problems of linear image restoration, the point spread function is assumed to be known even if this information is usually not available. In practice, both the blur matrix and the restored image should be performed from the observed noisy and blurred image. In this case, one talks about the blind image restoration. In this paper, we propose a method for blind image restoration by using convex constrained optimization techniques for solving large-scale ill-conditioned generalized Sylvester equations. The blur matrix is approximated by a Kronecker product of two matrices having Toeplitz and Hankel forms. The Kronecker product approximation is obtained from an estimation of the point spread function. Numerical examples are given to show the efficiency of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews H., Hunt B.: Digital image restoration. Prentice-Hall, Engelwood Cliffs, NJ (1977)

    Google Scholar 

  2. Ayers G.R., Dainty J.C.: Iterative blind deconvolution method and its applications. Optic. Lett. 13(7), 547–549 (1988)

    Article  Google Scholar 

  3. Barzilai J., Borwein J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas D.P.: On The Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Automatic Control 21, 174–184 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birgin E.G., Martínez J.M., Raydan M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Opt. 10, 1196–1211 (2001)

    Article  Google Scholar 

  6. Birgin E.G., Martínez J.M., Raydan M.: Algorithm 813: SPG-software for convex-constrained optimization. ACM Trans. Math. Software 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  7. Birgin E.G., Martínez J.M., Raydan M.: Inexact spectral gradient method for convex-constrained optimization. IMA J. Numer. Anal. 23, 539–559 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Engl H.W.: Regularization methods for the stable solution of inverse problems. Surveys Math. Indust. 3, 71–143 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Engl H.W., Hanke M., Neubauer A.: Regularization of inverse problems. Kluwer, Dordrecht, The Netherlands (1996)

    Book  MATH  Google Scholar 

  10. Fletcher R.: Low storage methods for unconstrained optimization. Lect. Appl. Math. (AMS) 26, 165–179 (1990)

    MathSciNet  Google Scholar 

  11. Fletcher, R.: On the Barzilai-Borwein method. In: Qi, L., Teo, K.L., Yang, X.Q. (eds.) Optimization and Control with Applications, pp. 235–256. Springer (2005)

  12. Georgiev, P., Pardalos, P.M., Cichocki, A.: Algorithms with high order convergence speed for blind source extraction. Comput. Optim. Appl. 38(1), 123–131 (2007) http://www.springerlink.com/content/77341880px11u570/

    Google Scholar 

  13. Georgiev, P., Pardalos, P.M., Theis, F.: A bilinear algorithm for sparse representations. Comput. Optim. Appl. 38(2), 249–259 (2007) http://www.springerlink.com/content/b628585m61367vh5/

    Google Scholar 

  14. Goldstein A.A.: Convex programming in Hilbert space. Bull. Am. Math. Soci. 70, 709–710 (1964)

    Article  MATH  Google Scholar 

  15. Grippo L., Lampariello F., Lucidi S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hager W.W., Park S.C.: The gradient projection method with exact line search. J. Glob. Optim. 30, 103–118 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansen, P.C.: http://www2.imm.dtu.dk/~pch/AirTools

  18. Jain A.K.: Fundamentals of digital image processing. Prentice-Hall, Engelwood Cliffs, NJ (1989)

    MATH  Google Scholar 

  19. La Cruz W., Martínez J.M., Raydan M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1449–1466 (2006)

    Article  Google Scholar 

  20. Lancaster P., Rodman L.: Algebraic Riccati Equations. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  21. Levitin E.S., Polyak B.T.: Constrained Minimization Problems. USSR Computl. Math. Mathl. Phys. 6, 1–50 (1966)

    Article  Google Scholar 

  22. Liao L.-Z., Qi L.Q., Tam H.W.: A gradient-based continuous method for large-scale optimization problems. J. Glob. Optim. 31, 271–286 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lucy L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974)

    Article  Google Scholar 

  24. Kamm J., Nagy J.G.: Kronecker product and SVD approximations in image restoration. Linear Algebra Appl. 284, 177–192 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamm J., Nagy J.G.: Kronecker product approximations for restoration image with reflexive boundary conditions. SIAM J. Matrix Anal. Appl. 25(3), 829–841 (2004)

    Google Scholar 

  26. Paige C.C., Sanders M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pruessner A., O’Leary D.P.: Blind deconvolution using a regularized structured total least norm algorithm. SIAM J. Matrix Anal. Appl. 24(4), 1018–1037 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Raydan M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Richardson W.H.: Bayesian-based iterative method of image restoration. J. Optic. Soc. Am. A 62, 55–59 (1972)

    Article  Google Scholar 

  30. Van Loan C.F., Pitsianis N.P.: Approximation with Kronecker products. In: Moonen, M.S., Golub, G.H. (eds) Linear Algebra for large scale and real time applications, pp. 293–314. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  31. Yuan G.L.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim. Lett. 3, 11–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jbilou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouhamidi, A., Jbilou, K. A Kronecker approximation with a convex constrained optimization method for blind image restoration. Optim Lett 6, 1251–1264 (2012). https://doi.org/10.1007/s11590-011-0370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0370-7

Keywords

Navigation