Abstract
Recently, a resolution-based transformation has been introduced for the usual Max-SAT encoding of several graph problems such as the Minimum Vertex Covering, Maximum Clique and Combinatorial Auctions which consists in iteratively applying specific inference rules to transform and simplify the original formula. Such transformation was shown suitable to improve the performance of local and systematic search procedures. In this paper, we present several refinements for such transformation. In particular, we introduce a more suitable transformation for the Minimum Vertex Covering problem, specially for its weighted version, and we extend its use for the Maximum Cut problem. Empirical results indicate that systematic Max-SAT solvers improve substantially their performance.
Similar content being viewed by others
References
Alsinet T., Manyà F., Planes J.: An efficient solver for weighted Max-SAT. J. Glob. Optim. 41(1), 61–73 (2008)
Anbulagan, P., Pham, D.N., Slaney, J.K., Sattar, A.: Old resolution meets modern SLS. In: AAAI, pp. 354–359 (2005)
Argelich J., Li C., Manyà F., Planes J.: The first and second Max-SAT evaluations. J. Satisf. Boolean Model. Comput. 4(2–4), 251–278 (2008)
Bansal, V., Bafna, V.: Hapcut: an efficient and accurate algorithm for the haplotype assembly problem. In: ECCB, pp. 153–159 (2008)
Bonet M.L., Levy J., Manyà F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 606–618 (2007)
Drake, L., Frisch, A.M.: Combining inference and search for the propositional satisfiability problem. In: AAAI/IAAI, p. 982 (2002)
Du D., Gu J., Pardalos P.M.: Satisfiability Problem: Theory and Applications. DIMACS Series, vol. 35. American Mathematical Society, Providence (1998)
Fahle, T.: Simple and fast: improving a branch-and-bound algorithm for maximum clique. In: Proceedings of ESA, pp. 485–498 (2002)
Fu, Z., Malik, S.: On solving the partial max-sat problem. In: SAT, pp. 252–265 (2006)
de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as weighted CSP. In: CP, pp. 363–376 (2003)
Guerri, A., Milano, M.: CP-IP techniques for the bid evaluation in combinatorial auctions. In: CP, pp. 863–867 (2003)
Heras F., Bañeres D.: The impact of max-sat resolution-based preprocessors on local search solvers. J. Satisf. Boolean Model. Comput. 7(2–3), 89–126 (2010)
Heras, F., Larrosa, J.: A Max-SAT inference-based pre-processing for max-clique. In: SAT, pp. 139–152 (2008)
Heras F., Larrosa J., de Givry S., Schiex T.: 2006 and 2007 Max-SAT evaluations: Contributed instances. J. Satisf. Boolean Model. Comput. 4(2–4), 239–250 (2008)
Heras F., Larrosa J., Oliveras A.: MiniMaxSAT: an efficient weighted Max-SAT solver. J. Artif. Intell. Res. 31, 1–32 (2008)
Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial auction algorithms. ACM E-Commerce, pp. 66–76 (2000)
Larrosa J., Heras F., de Givry S.: A logical approach to efficient Max-SAT solving. Artif. Intell. 172(2–3), 204–233 (2008)
Li C., Manyà F., Planes J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30, 321–359 (2007)
Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem. In: AAAI (2010)
Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound computation in Max-SAT solving. In: AAAI, pp. 351–356 (2008)
Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: DATE, pp. 408–413 (2008)
Niedermeier R., Rossmanith P.: New upper bounds for maximum satisfiability. J. Algorithms 36(1), 63–88 (2000)
Östergård P.R.J.: A new algorithm for the maximum-weight clique problem. Nord. J. Comput. 8(4), 424–436 (2001)
Östergård P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120, 197–207 (2002)
Palubeckis G.: A new bounding procedure and an improved exact algorithm for the max-2-sat problem. Appl. Math. Comput. 215(3), 1106–1117 (2009)
Pardalos, P.M., Rebennack, S.: Computational challenges with cliques, quasi-cliques and clique partitions in graphs. In: SEA, pp. 13–22 (2010)
Pardalos P.M., Resende M.G.C., Pitsoulis L.S.: Fortran subroutines for computing approximate solutions of weighted max-sat problems using grasp. Discrete Appl. Math. 100, 95–113 (1999)
Pipatsrisawat K., Palyan A., Chavira M., Choi A., Darwiche A.: Solving weighted Max-SAT problems in a reduced search space: a performance analysis. J. Satisf. Boolean Model. Comput. 4, 191–217 (2008)
Ramírez, M., Geffner, H.: Structural relaxations by variable renaming and their compilation for solving MinCostSAT. In: CP, pp. 605–619 (2007)
Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: AAAI, pp. 337–343 (1994)
Simone C.D., Diehl M., Jünger M., Mutzel P., Reinelt G., Rinaldi G.: Exact ground states in spin glasses: New experimental results with a branch-and-cut algorithm. J. Stat. Phys. 80, 487–496 (1995)
Strickland D.M., Barnes E., Sokol J.S.: Optimal protein structure alignment using maximum cliques. Oper. Res. 53(3), 389–402 (2005)
Tomita, E., Sutani, Y., Higashi, T.: A more efficient algorithm for finding a maximum clique with an improved approximate coloring. In: PDPTA, pp. 719–725 (2007)
Xu K., Boussemart F., Hemery F., Lecoutre C.: Random constraint satisfaction: Easy generation of hard (satisfiable) instances. Artif. Intell. 171(8–9), 514–534 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Heras, F., Baneres, D. Incomplete inference for graph problems. Optim Lett 7, 791–805 (2013). https://doi.org/10.1007/s11590-012-0461-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-012-0461-0