Abstract
In this paper, we consider a generalized vector mixed general quasi-variational-like inequality in Hausdorff topological vector spaces. By using maximal element theorem, we prove existence theorems for two types of generalized vector mixed general quasi-variational-like inequalities without monotonicity and compactness.
Similar content being viewed by others
References
Baiochi C., Capelo A.: Variational and Quasi Variational Inequalities. Wiley, New York (1984)
Cottle R.W., Giannessi F., Lions J.L.: Variational Inequalities and Complementarity Problems. John Wiley and Sons, New York (1980)
Ding X.P., Tarafdar E.: Generalized vector variational-like inequalities without monotonicity. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibrium, Mathematical Theories, pp. 113–123. Kluwer, Dordrecht (2000)
Ding X.P., Tarafdar E.: Generalized vector variational-like inequalities with C x -η-pseudomonotone mappings. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibrium, Mathematical Theories, pp. 125–140. Kluwer, Dordecht (2000)
Lee G.M., Lee B.S., Chang S.S.: On vector quasivariational inequalities. J. Math. Anal. Appl. 203, 626–639 (1996)
Luo Q.: Generalized vector variational-like inequalities. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibrium, Mathematical Theories, pp. 363–369. Kluwer, Dordrecht (2000)
Patriksson M.: Nonlinear Programming and Variational Inequality problems: A unified approach. Kluwer, Dordrecht (1999)
Chen, G.Y., Cheng, G.M.: Vector variational inequalities and vector optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 285, pp. 408–456 (1987)
Lee G.M., Kim D.S., Cho S.J.: Generalized vector variational inequalities and fuzzy extensions. Appl. Math. Lett. 6(6), 47–51 (1993)
Khan M.F., Khan M.F.: On generalized vector variational like inequalities. Nonlinear Anal. 59, 879–889 (2004)
Yang X.Q.: Generalized convex functions and vector variational inequality. J. Optim. Theory Appl. 79, 563–580 (1993)
Ding X.P.: The generalized vector quasi-variational-like inequalities. Comput. Math. Appl. 37, 57–67 (1999)
Peng J.W.: Equilibrium problems on W space. Math. Appl. 12(3), 81–87 (1999)
Usman F., Khan S.A.: A generalized mixed vector variational-like inequality problem. Nonlinear Anal. 71(11), 5354–5362 (2009)
Irfan S.S., Ahmad R.: Generalized multivalued variational-like inequalities. J. Glob. Optim. 46(1), 25–30 (2010)
Chen G.Y., Li S.J.: Existence of solutions for a generalized vector variational inequality. J. Optim Th. Appl. 90, 321–334 (1996)
Lee G.M., Kim D.S., Lee B.S.: Generalized vector variational inequalities. Appl. Math. Lett. 9(1), 39–42 (1996)
Noor M.A.: Multivalued general equilibrium problems. J. Math. Anal. Appl. 283, 140–149 (2003)
Moudafi. A., Théra, M.: Proximal and dynamical approaches to equilibrium problems. In: Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187–201, Springer, Berlin (1999)
Kazmi K.R., Khan F.A.: Existence and iterative approximation of solutions of generalized mixed equilibrium problems. Comput. Math. Appl. 56, 1314–1321 (2008)
Huang N.J., Lan H.Y., Cho Y.J.: Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings. J. Comput. Appl. Math. 196, 608–618 (2006)
Ding X.P.: Iterative algorithm of solutions for generalized mixed implicit equilibrium-like problems. Appl. Math. Comput. 162(2), 799–809 (2005)
Ding X.P., Lin Y.C., Yao J.C.: Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems. Appl. Math. Mech. 27(9), 1157–1164 (2006)
Ding X.P.: Approximation solvability of system of generalized mixed implicity equilibrium problems in Banach spaces. J. Sichuan Normal Univ. (N.S.) 34(1), 1–9 (2011)
László S.: Some existence results of solutions for general variational inequalities. J. Optim. Theory Appl. 150, 425–443 (2011)
Peng, J.M., Yang, X.M.: Generalized vector quasi-variational-like inequalities. J. Inequal. Appl. doi:1029-242X-2006-59387 (2006)
Huang N.J., Li J., Thompson H.B.: Generalized vector F-variational inequalities and vector F-completementarity problems for point to set mappings. Math. Comput. Modelling 48, 908–917 (2008)
Yang X.Q., Yao J.C.: Gap functions and existence of solutions to set valued vector variational inequalities. J. Optim. Theory Appl. 11, 407–417 (2002)
Chadli O., Chiang Y., Huang S.: Topological pseudomonotonicity and vector equilibrium problems. J. Math. Anal. Appl. 270, 435–450 (2002)
Chen G.Y., Huang X.X., Yang X.Q.: Vector Optimization Set-Valued and Variational Analysis. Springer, Berlin (2005)
Göpfert A., Tammer C., Riahi H., Zălinescu C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)
Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems and Variational Models. Kluwer, Dordrecht (2001)
Pardalos, P.M., Rassias, T.M., Khan, A.A. (eds.): Nonlinear Analysis and Variational Problems. Springer. http://www.springer.com/mathematics/applications/book/978-1-4419-0157-6 (2010)
Gibert R.P., Panagiotopoulos P.D., Pardalos P.M.: From Convexity to Nonconvexity. Kluwer, Dordrecht (2001)
Peng J.W., Wu S.Y.: The generalized Tykhonov well-posedness for system of vector quasi-equilibrium problems. Optim. Lett. 4(4), 501–512 (2010)
Mishra S.K., Wang S.Y., Lai K.K.: On non-smooth α-invex functions and vector variational-like inequality. Optim. Lett. 2(1), 91–98 (2008)
Tian G.Q., Zhou J.X.: Quasi-variational inequalities without the concavity assumptions. J. Math. Anal. Appl. 132, 289–299 (1993)
Zhou Z.X., Chen G.: Diagonal convexity conditions for problems in convex analysis and quasi- variational inequalities. J. Math. Anal. Appl. 132, 219–228 (1988)
Aubin J.P., Ekland I.: Applied Nonlinear Analysis. Wiley-Interscience, New York (1984)
Su C.H., Sehgal V.M.: Some fixed points theorems for condensing multifunctions in locally convex spaces. Proc. Am. Math. Soc. 50, 150–154 (1975)
Kim W.K.: Existence of maximal element and equilibrium for a nonparacompact N-person game. Proc. Am. Math. Soc. 116, 797–807 (1992)
Giannessi F.: Vector Variational Inequalities and Vector Equilibrium, Mathematical Theories. Kluwer Academic Publishers, Dordrecht (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ding, X.P., Salahuddin Generalized vector mixed general quasi-variational-like inequalities in Hausdorff topological vector spaces. Optim Lett 7, 893–902 (2013). https://doi.org/10.1007/s11590-012-0464-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-012-0464-x