Skip to main content
Log in

An approach for solving competitive location problems with variable demand using multicore systems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A planar competitive location and design problem with variable demand is considered. The assumption that the demand may vary depending on the conditions of the market makes the problem more realistic, but it also increases its complexity, and therefore, the computational effort needed to solve it. In this paper, a modification of a heuristic recently proposed to cope with the problem is presented, which allows, on the one hand, to obtain the same solutions as the original heuristic more quickly and, on the other hand, to handle larger size problems. Furthermore, a parallel version of the algorithm, suitable for being run in most of today’s personal computers, has also been proposed. The parallel algorithm has been implemented using the OpenMP library and the results show an ideal efficiency up to at least eight processors (the largest number of available processing elements). The effectiveness of the parallel algorithm has also been measured. From the computational results, it can be inferred that the proposed parallelization is robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agulleiro, J., Fernández, J.J.: Fast tomographic reconstruction on multicore computers. Bioinformatics 27(4), 582–583 (2011)

    Article  Google Scholar 

  2. Agulleiro, J., Garzón, E., García, I., Fernández, J.J.: Vectorization with simd extensions speeds up reconstruction in electron tomography. J. Struct. Biol. 170(3), 570–575 (2010)

    Article  Google Scholar 

  3. Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with variable expenditures. Ann. Oper. Res. 111(1), 197–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Campbell, J., Stiehr, G., Ernst, A., Krishnamoorthy, M.: Solving hub arc location problems on a cluster of workstations. Parallel Comput. 29(5), 555–574 (2003)

    Article  Google Scholar 

  5. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP. Portable shared memory parallel programming. The MIT Press, Cambridge (2008)

    Google Scholar 

  6. Crainic, T., Toulouse, M., Gendreau, M.: Synchronous tabu search parallelization strategies for multicommodity location-allocation with balancing requirements. OR Spectr. 17(2–3), 113–123 (1995)

    Article  MATH  Google Scholar 

  7. Crainic, T., Toulouse, M., Gendreau, M.: Parallel asynchronous tabu searh for multicomodity location-allocation with balancing requirements. Ann. Oper. Res. 63(2), 277–299 (1996)

    Article  MATH  Google Scholar 

  8. Cura, T.: A parallel local search approach to solving the uncapacitated warehouse location problem. Comput. Ind. Eng. 59(4), 1000–1009 (2010)

    Article  Google Scholar 

  9. Drezner, T., Drezner, Z., Salhi, S.: Solving the multiple competitive facilities location problem. Eur. J. Oper. Res. 142(1), 138–151 (2002)

    Google Scholar 

  10. Drezner, Z., Hamacher, H.: Facility Location. Applications and Theory. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  11. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur. J. Oper. Res. 179(3), 1274–1287 (2007)

    Article  MATH  Google Scholar 

  12. Francis, R., McGinnis, L., White, J.: Facility Layout and Location: An Analytical Approach. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  13. García-López, F., Melián-Batista, B., Moreno-Pérez, J., Moreno-Vega, J.: The parallel variable neighborhood search for the \(p\)-median problem. J. Heuristics 8(3), 375–388 (2002)

    Article  MATH  Google Scholar 

  14. Gendron, B., Crainic, T.: A parallel branch-and-bound algorithm for multicommodity location with balancing requirements. Comput. Oper. Res. 24(9), 829–847 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Computing I: Basic Numerical Problems: Theory, Algorithms, and Programs. Springer, Berlin (1995)

    MATH  Google Scholar 

  16. Hennessy, J., Patterson, D.: Computer Architecture, Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco (2006)

    Google Scholar 

  17. Knüppel, O.: PROFIL/BIAS—a fast interval library. Computing 1(53), 277–287 (1993)

    Google Scholar 

  18. Redondo, J., Fernández, J., Arrondo, A.G., García, I., Ortigosa, P.: Fixed or variable demand? Does it matter when locating a facility? Omega 40(1), 9–20 (2012)

    Article  Google Scholar 

  19. Redondo, J., Fernández, J., García, I., Ortigosa, P.: Parallel algorithms for continuous competitive location problems. Optim. Methods Softw. 23(5), 779–791 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Redondo, J., Fernández, J., García, I., Ortigosa, P.: Parallel algorithms for multifacilities continuous competitive location problems. J. Global Optim. 50(4), 557–573 (2011)

    Article  MathSciNet  Google Scholar 

  21. Redondo, J., Fernández, J., García, I., Ortigosa, P.: Solving the facility location and design \((1|1)\)-centroid problem via parallel algorithms. J. Supercomput. 58(3), 420–428 (2011)

    Article  Google Scholar 

  22. Redondo, J., García, I., Ortigosa, P., Pelegín, B., Fernández, P.: Parallelization of an algorithm for finding facility locations for an entering firm under delivered pricing. In: Proceedings of Parallel Computing, (PARCO 2005), pp. 269–276 (2005)

  23. Rosen, J., Xue, G.L.: Computational comparison of two algorithms for the euclidean single facility location problem. ORSA J. Comput. 3(3), 207–212 (1991)

    Article  MATH  Google Scholar 

  24. de Silva, A., Abramson, D.: A parallel interior point method and its application to facility location problems. Comput. Optim. Appl. 9(3), 249–273 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tóth, B., Fernández, J.: Interval Methods for Single and Bi-objective Optimization Problems—Applied to Competitive Facility Location Models. Lambert Academic Publishing, Saarbrücken (2010)

    Google Scholar 

  26. Tóth, B., Plastria, F., Fernández, J., Pelegrín, B.: On the impact of spatial pattern, aggregation, and model parameters in planar Huff-like competitive location and design problems. OR Spectr. 31(3), 601–627 (2009)

    Article  MATH  Google Scholar 

  27. Weiszfeld, E.: Sur le point pour lequel la somme des distances de \(n\) points donnés est minimum. Tohoku Math. J. 43, 355–386 (1937)

    Google Scholar 

  28. Wesolowsky, G.: The Weber problem: history and perspectives. Location Sci. 1(1), 5–23 (1993)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2008-01117, ECO2011-24927), Junta de Andalucía (P08-TIC-3518 and P10-TIC-6002) and Fundación Séneca (The Agency of Science and Technology of the Region of Murcia, 00003/CS/10 and 15254/PI/10), in part financed by the European Regional Development Fund (ERDF). Juana López Redondo is a fellow of the Spanish ‘Juan de la Cierva’ contract program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Arrondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arrondo, A.G., Fernández, J., Redondo, J.L. et al. An approach for solving competitive location problems with variable demand using multicore systems. Optim Lett 8, 555–567 (2014). https://doi.org/10.1007/s11590-012-0596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0596-z

Keywords

Navigation