Abstract
Similarity measures play a critical role in the solution quality of data analysis methods. Outliers or noise often taint the solution, hence, practical data analysis calls for robust measures. The correntropic loss function is a smooth and robust measure. In this paper, we present the properties of the correntropic loss function that can be utilized in optimization based data analysis methods.

Similar content being viewed by others
References
Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, London (2006)
Ben-Israel, A., Mond, B.: What is invexity. J. Aust. Math. Soc. Ser. B 28(1), 1–9 (1986)
Cambini, A., Martein, L.: Generalized Convexity and Optimization: Theory and Applications, vol. 616. Springer, Berlin (2008)
Craven, B.D.: Duality for generalized convex fractional programs. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 473–489. Academic Press, New York (1981)
Eddington, S.A.S.: Stellar Movements and the Structure of the Universe. Macmillan and Company, limited, London (1914)
Fisher, R.A., et al.: A mathematical examination of the methods of determining the accuracy of an observation by the mean error, and by the mean square error. Mon. Not. R. Astron. Soc. 80, 758–770 (1920)
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions, vol. 114. Wiley, London (2011)
Hanson, M.A.: On sufficiency of the kuhn-tucker conditions. J. Math. Anal. Appl. 80(2), 545–550 (1981)
He, R., Zheng, W.S., Hu, B.G., Kong, X.W.: A regularized correntropy framework for robust pattern recognition. Neural. Comput. 23(8), 2074–2100 (2011)
Huber, P.J., Ronchetti, E.M.: Robust Statistics, Wiley Series in Probability and Statistics, New Jersey (2009)
Huber, P.J.: Robust Statistical Procedures. Number 27. SIAM, Philadelphia, USA (1997)
Khanh, P.Q.: Invex-convexlike functions and duality. J. Optim. Theory. Appl. 87(1), 141–165 (1995)
Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: a localized similarity measure. In: International Joint Conference on Neural Networks, 2006. IJCNN’06, pp. 4919–4924. IEEE (2006)
Liu, W., Pokharel, P.P., Principe, J.C.: Error entropy, correntropy and m-estimation. In: Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, pp. 179–184. IEEE (2006)
Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: properties and applications in non-gaussian signal processing. Signal Process. IEEE Trans. 55(11), 5286–5298 (2007)
Mangasarian, O.L.: Pseudo-convex functions. J. Soc. Ind. Appl. Math. Ser. A Control 3(2), 281–290 (1965)
Mangasarian, O.L., Mangasarian, O.L., Mangasarian, O.L.: Nonlinear Programming. Society for Industrial and Applied Mathematics, Philadelphia, PA (1994)
Pardalos, P.M., Hansen, P.: Data Mining and Mathematical Programming, vol. 45. Amer Mathematical Society, Rhode Island, USA (2008)
Principe, J.C.: Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives. Springer, Berlin (2010)
Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Risk tuning with generalized linear regression. Math. Oper. Res. 33(3), 712–729 (2008)
Santamaría, I., Pokharel, P.P., Principe, J.C.: Generalized correlation function: definition, properties, and application to blind equalization. Signal Process. IEEE Trans. 54(6), 2187–2197 (2006)
Singh, A., Principe, J.C.: Using correntropy as a cost function in linear adaptive filters. In: International Joint Conference on Neural Networks, 2009. IJCNN 2009, pp. 2950–2955. IEEE (2009)
Singh, A., Principe, J.C.: A loss function for classification based on a robust similarity metric. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2010)
Syed, M.N., Principe, J.C., Pardalos, P.M.: Correntropy in data classification. In: Sorokin, A., Murphey, R., Thai, M.T., Pardalos, P.M. (eds.) Dynamics of Information Systems: Mathematical Foundations, pp. 81–117. Springer, Berlin (2012)
Tukey, J.W.: A survey of sampling from contaminated distributions. Contrib. Probab. Stat. 2, 448–485 (1960)
Acknowledgments
This research is partially supported by NSF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Syed, M.N., Pardalos, P.M. & Principe, J.C. On the optimization properties of the correntropic loss function in data analysis. Optim Lett 8, 823–839 (2014). https://doi.org/10.1007/s11590-013-0626-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-013-0626-5