Abstract
In this paper, we consider a class of nonlinear dynamic systems with terminal state and continuous inequality constraints. Our aim is to design an optimal feedback controller that minimizes total system cost and ensures satisfaction of all constraints. We first formulate this problem as a semi-infinite optimization problem. We then show that by using a new exact penalty approach, this semi-infinite optimization problem can be converted into a sequence of nonlinear programming problems, each of which can be solved using standard gradient-based optimization methods. We conclude the paper by discussing applications of our work to glider control.






Similar content being viewed by others
References
Açikmeşe, B., Blackmore, L.: Lossless convexification of a class of optimal control problems with non-convex control constraints. Automatica 47, 341–347 (2011)
Bazarra, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New Jersey (2006)
Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks Cole, Boston (2010)
Farhadinia, B., Teo, K.L., Loxton, R.: A computational method for a class of non-standard time optimal control problems involving multiple time horizons. Math. Comput. Model. 49, 1682–1691 (2009)
Fisher, M.E., Grantham, W.J., Teo, K.L.: Neighbouring extremals for nonlinear systems with control constraints. Dyn. Control 5, 225–240 (1995)
Gerdts, M., Kunkel, M.: A nonsmooth Newton’s method for discretized optimal control problems with state and control constraints. J. Ind. Manag. Optim. 4, 247–270 (2008)
Jiang, C., Teo, K.L., Loxton, R., Duan, G.R.: A neighboring extremal solution for an optimal switched impulsive control problem. J. Ind. Manag. Optim. 8, 591–609 (2012)
Kamgarpour, M., Tomlin, C.: On optimal control of non-autonomous switched systems with a fixed mode sequence. Automatica 48, 1177–1181 (2012)
Kaya, C.Y., Noakes, J.L.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117, 69–92 (2003)
Li, B., Teo, K.L., Lim, C.C., Duan, G.R.: An optimal PID controller design for nonlinear constrained optimal control problems. Discret. Contin. Dyn. Syst.—Ser. B 16, 1101–1117 (2011)
Lin, Q., Loxton, R., Teo, K.L., Wu, Y.H.: A new computational method for a class of free terminal time optimal control problems. Pac. J. Optim. 7, 63–81 (2011)
Lin, Q., Loxton, R., Teo, K.L., Wu, Y.H.: Optimal control computation for nonlinear systems with state-dependent stopping criteria. Automatica 48, 2116–2129 (2012)
Lin, Q., Loxton, R., Teo, K.L., Wu, Y.H., Yu, C.: A new exact penalty method for semi-infinite programming problems. J. Comput. Appl. Math. (accepted subject to minor changes)
Loxton, R., Teo, K.L., Rehbock, V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44, 2923–2929 (2008)
Loxton, R., Teo, K.L., Rehbock, V.: Robust suboptimal control of nonlinear systems. Appl. Math. Comput. 217, 6566–6576 (2011)
Loxton, R., Teo, K.L., Rehbock, V., Ling, W.K.: Optimal switching instants for a switched-capacitor DC/DC power converter. Automatica 45, 973–980 (2009)
Loxton, R., Teo, K.L., Rehbock, V., Yiu, K.F.C.: Optimal control problems with a continuous inequality constraint on the state and the control. Automatica 45, 2250–2257 (2009)
Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer, New York (2008)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)
Pontryagin, L.S.: The Mathematical Theory of Optimal Processes. Gordan and Breach, New York (1986)
Rehbock, V., Teo, K.L., Jennings, L.S.: A computational procedure for suboptimal robust controls. Dyn. Control 2, 331–348 (1992)
Schittkowski, K.: NLPQLP: A Fortran Implementation of a Sequential Quadratic Programming Algorithm with Distributed and Non-Monotone Line Search—User’s Guide. University of Bayreuth, Bayreuth (2007)
Vincent, T.L., Grantham, W.J.: Optimality in Parametric Systems. Wiley, New York (1981)
Wang, L.Y., Gui, W.H., Teo, K.L., Loxton, R., Yang, C.H.: Time delayed optimal control problems with multiple characteristic time points: computation and industrial applications. J. Ind. Manag. Optim. 5, 705–718 (2009)
Xu, X., Antsaklis, P.J.: Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Autom. Control 49, 2–16 (2004)
Yu, C., Li, B., Loxton, R., Teo, K.L.: Optimal discrete-valued control computation. J. Glob. Optim. (2012). doi:10.1007/s10898-012-9858-7
Yu, C., Teo, K.L., Zhang, L., Bai, Y.: A new exact penalty function method for continuous inequality constrained optimization problems. J. Ind. Manag. Optim. 6, 895–910 (2010)
Zhao, Y., Stadtherr, M.A.: Rigorous global optimization method for dynamic systems subject to inequality path constraints. Ind. Eng. Chem. Res. 50, 12678–12693 (2011)
Zhou, J., Teo, K.L., Zhou, D., Zhao, G.: Nonlinear optimal feedback control for lunar module soft landing. J. Glob. Optim. 52, 211–227 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lin, Q., Loxton, R., Teo, K.L. et al. Optimal feedback control for dynamic systems with state constraints: An exact penalty approach. Optim Lett 8, 1535–1551 (2014). https://doi.org/10.1007/s11590-013-0657-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-013-0657-y