Skip to main content
Log in

Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper was originally motivated by the problem of providing a point-based formula (only involving the nominal data, and not data in a neighborhood) for estimating the calmness modulus of the optimal set mapping in linear semi-infinite optimization under perturbations of all coefficients. With this aim in mind, the paper establishes as a key tool a basic result on finite-valued convex functions in the \(n\)-dimensional Euclidean space. Specifically, this result provides an upper limit characterization of the boundary of the subdifferential of such a convex function. When applied to the supremum function associated with our constraint system, this characterization allows us to derive an upper estimate for the aimed calmness modulus in linear semi-infinite optimization under the uniqueness of nominal optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azé, D., Corvellec, J.-N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cánovas, M.J., Dontchev, A.L., López, M.A., Parra, J.: Isolated calmness of solution mappings in convex semi-infinite optimization. J. Math. Anal. Appl. 350, 892–837 (2009)

    Article  Google Scholar 

  3. Cánovas, M.J., Kruger, A.Y., López, M.A., Parra, J., Thera, M.A.: Calmness modulus of linear semi-infinite programs. SIAM J. Optim. 24, 29–48 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Lispchitz continuity of the optimal value via bounds on the optimal set in linear semi-infinite optimization. Math. Oper. Res. 31, 478–489 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Calmness of the feasible set mapping for linear inequality systems. Set Valued Var. Anal. 22, 375–389 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis. Springer, New York (2009)

    Book  Google Scholar 

  7. Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goberna, M.A., López, M.A.: Linear semi-infinite optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  9. Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. B 104, 437–464 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jourani, A.: Hoffman’s error bound, local controllability, and sensitivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Klatte, D. Kummer, B.: Nonsmooth equations in optimization: regularity, calculus, methods and applications. Nonconvex Optimization and Its Applications, vol. 60 Kluwer Academic, Dordrecht (2002)

  13. Klatte, D., Kummer, B.: Optimization methods and stability of inclusions in Banach spaces. Math. Program. B 117, 305–330 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klatte, D., Thiere, G.: Error bounds for solutions of linear equations and inequalities. Math. Methods Oper. Res. 41, 191–214 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for convex constraint systems in Banach spaces. SIAM J. Optim. 20, 3280–3296 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mordukhovich, B.S.: Variational analysis and generalized differentiation, I: basic theory. Springer, Berlin (2006)

    Google Scholar 

  17. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  18. Rockafellar, R.T., Wets, R.J.-B.: Variational analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  19. Zălinescu, C.: Convex analysis in general vector spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Professor Marco A. López for his support and valuable hints and comments, specially in relation to Sect. 3. We would also like to thank the anonymous referee for his/her comments and suggestions about further connections between the calmness moduli of \(\vartheta \) and \(\mathcal {S}\), which will be helpful for future research. This research has been partially supported by Grant MTM2011-29064-C03-03 from MINECO, Spain. The research of the second author is also partially supported by Fondecyt Project No 1110019, ECOS-Conicyt project No C10E08, and Math-Amsud No. 13MATH-01 2013

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Parra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cánovas, M.J., Hantoute, A., Parra, J. et al. Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization. Optim Lett 9, 513–521 (2015). https://doi.org/10.1007/s11590-014-0767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0767-1

Keywords

Navigation