Abstract
The well known DIRECT (DIviding RECTangles) algorithm for global optimization requires bound constraints on variables and does not naturally address additional linear or nonlinear constraints. A feasible region defined by linear constraints may be covered by simplices, therefore simplicial partitioning may tackle linear constraints in a very subtle way. In this paper we demonstrate this advantage of simplicial partitioning by applying a recently proposed deterministic simplicial partitions based DISIMPL algorithm for optimization problems defined by general linear constraints (Lc-DISIMPL). An extensive experimental investigation reveals advantages of this approach to such problems comparing with different constraint-handling methods, proposed for use with DIRECT. Furthermore the Lc-DISIMPL algorithm gives very competitive results compared to a derivative-free particle swarm algorithm (PSwarm) which was previously shown to give very promising results. Moreover, DISIMPL guarantees the convergence to the global solution, whereas the PSwarm algorithm sometimes fails to converge to the global minimum.



Similar content being viewed by others
References
Baker, C.A., Watson, L.T., Grossman, B., Mason, W.H., Haftka, R.T.: Parallel global aircraft configuration design space exploration. In: Tentner A. (ed.) High Performance Computing Symposium 2000, pp. 54–66. Society for Computer Simulation International (2000)
Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002). doi:10.1023/A:1013729320435
Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001). doi:10.1023/A:1013123110266
Chiter, L.: DIRECT algorithm: a new definition of potentially optimal hyperrectangles. Appl. Math. Comput. 179(2), 742–749 (2006). doi:10.1016/j.amc.2005.11.127
Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization, vol. 8, SIAM (2009). doi:10.1137/1.9780898718768
Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Global Optim. 21(4), 415–432 (2001). doi:10.1023/A:1012782825166
De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational geometry. Springer, Berlin, Heidelberg (2000). doi:10.1007/978-3-662-04245-8_1
Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR. Otdelenie Matematicheskii i Estestvennyka Nauk 7(793—-800), 1–2 (1934)
Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding RECTangles algorithm for a problem in astrophysics. J. Optim. Theory Appl. 151(1), 175–190 (2011). doi:10.1007/s10957-011-9856-9
Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7(4), 819–829 (2013)
Evtushenko, Y.G.: Numerical methods for finding global extrema (case of a non-uniform mesh). USSR Comput. Math. Math. Phys. 11(6), 38–54 (1971)
Finkel, D.E.: Direct optimization algorithm user guide. Center for Research in Scientific Computation, North Carolina State University 2 (2003)
Finkel, D.E.: Global optimization with the Direct algorithm. Ph.D. thesis, North Carolina State University (2005)
Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Global Optim. 36(4), 597–608 (2006). doi:10.1007/s10898-006-9029-9
Fletcher, R.: Practical Methods of Optimization, vol. 37. Wiley, New York (1987)
Gablonsky, J.M.: Modifications of the Direct algorithm. Ph.D. thesis, North Carolina State University (2001)
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Global Optim. 21(1), 27–37 (2001). doi:10.1023/A:1017930332101
He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.: Dynamic data structures for a DIRECT search algorithm. Comput. Optim. Appl. 23(1), 5–25 (2002). doi:10.1023/A:1019992822938
Hendrix, E.M., Casado, L.G., Amaral, P.: Global optimization simplex bisection revisited based on considerations by reiner horst. Computational Science and Its Applications-ICCSA 2012, pp. 159–173. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-31137-6_12
Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer Academic Publishers, Dordrecht (1995)
Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers, Nonconvex Optimization and Its Application (1995)
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)
Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Global Optim. 14(4), 331–355 (1999)
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993). doi:10.1007/BF00941892
Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009). doi:10.1007/s11590-008-0110-9
Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012). doi:10.1016/j.cam.2012.02.020
Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013). doi:10.1137/110859129
Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations for the solution for large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010). doi:10.1007/s10589-008-9217-2
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Global Optim. 48(1), 113–128 (2010). doi:10.1007/s10898-009-9515-y
Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)
Neumaier, A.: MCS: global optimization by multilevel coordinate search. http://www.mat.univie.ac.at/neum/software/mcs/
Pardalos, P.M., Schnitger, G.: Checking local optimality in constrained quadratic programming is NP-hard. Oper. Res. Lett. 7(1), 33–35 (1988)
Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Global Optim. 59(2–3), 545–567 (2014). doi:10.1007/s10898-014-0180-4
Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf. Technol. Control 36(4), 383–387 (2007)
Paulavičius, R., Žilinskas, J.: Influence of Lipschitz bounds on the speed of global optimization. Technol. Econ. Dev. Econ. 18(1), 54–66 (2012). doi:10.3846/20294913.2012.661170
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014). doi:10.1007/978-1-4614-9093-7
Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Global Optim. 59(1), 23–40 (2014). doi:10.1007/s10898-013-0089-3
Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010). doi:10.1007/s11590-009-0156-3
Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)
Piyavskii, S.A.: An algorithm for finding the absolute extremum of a function. Zh. Vychisl. Mat. mat. Fiz 12(4), 888–896 (1972)
Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2012). doi:10.1007/s10898-012-9951-y
Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006). doi:10.1137/040621132
Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science (in 8 volumes), vol. 4, pp. 2812–2828. Wiley, New York (2011)
Sergeyev, Y.D., Pugliese, P., Famularo, D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Math. Program. 96(3), 489–512 (2003). doi:10.1007/s10107-003-0372-z
Vaz, A.I.F.: PSwarm solver home page (2010). http://www.norg.uminho.pt/aivaz/pswarm/. Accessed 12 Dec 2013
Vaz, A.I.F., Vicente, L.: Pswarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim. Methods Softw. 24(4–5), 669–685 (2009)
Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). doi:10.3846/1392-6292.2008.13.145-159
Acknowledgments
Postdoctoral fellowship of R. Paulavičius is being funded by European Union Structural Funds project “Postdoctoral Fellowship Implementation in Lithuania” within the framework of the Measure for Enhancing Mobility of Scholars and Other Researchers and the Promotion of Student Research (VP1-3.1-ŠMM-01) of the Program of Human Resources Development Action Plan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Paulavičius, R., Žilinskas, J. Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim Lett 10, 237–246 (2016). https://doi.org/10.1007/s11590-014-0772-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-014-0772-4