Abstract
We propose an exact algorithm for the Target Visitation Problem (TVP). The (TVP) is a composition of the Linear Ordering Problem and the Traveling Salesman Problem. It has several military and non-military applications, where two important, often competing factors are the overall distance traveled (e.g. by an unmanned aerial vehicle) and the visiting sequence of the various targets or points of interest. Hence our algorithm can be used to find the optimal visiting sequence of various pre-determined targets. First we show that the (TVP) is a special Quadratic Position Problem. Building on this finding we propose an exact semidefinite optimization approach to tackle the (TVP) and finally demonstrate its efficiency on a variety of benchmark instances with up to 50 targets.


Similar content being viewed by others
Notes
The Branch-and-Cut algorithm by Applegate et al. [3] holds the current record, solving an instance with 85,900 cities.
The first target is visited twice such that the tour is closed.
We note that the content of the companion paper is fairly disjoint from this paper: it deals with the (QPP) from a polyhedral point of view and applies the resulting SDP relaxations to facet defining inequalities of small (TSP) and (LOP) polytopes to facilitate the theoretical analysis of the relaxations proposed. In the companion paper we do not consider the (TVP) nor conduct any large-scale computations. Due to space restrictions we omit the proofs concerning the (QPP) and refer to our companion paper for details.
If the benefits are negative, the associated optimization problem in fact minimizes the total costs over all assignments.
We do note count the diagonal entries as the have to be \(0\) by definition.
See https://www.iwr.uni-heidelberg.de/groups/comopt/software/index.html for details.
When combining the “pal”-Instances with “br17” and “ftv33”, we multiply the binary entries by 10 and 100 respectively to balance the (LOP) benefits with the (TSP) distances. Otherwise the optimal (TVP) tour would be very similar to the optimal (TSP) tour.
The instances are available from [24].
References
Achatz, H., Kleinschmidt, P., Lambsdorff, J.: Der corruption perceptions index und das linear ordering problem. ORNews 26, 10–12 (2006)
Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization Theory, Algorithms, Software and Applications. International Series in Operations Research and Management Science. Springer, New York (2012)
Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)
Arulselvan, A., Commander, C., Pardalos, P.: A random keys based genetic algorithm for the target visitation problem. In: Advances in Cooperative Control and Optimization, pp. 389–397. Springer, Berlin (2007)
Békési, J., Galambos, G., Oswald, M., Reinelt, G.: Comparison of approaches for solving coupled task problems. Technical report, Ruprecht-Karls-Universität Heidelberg (2008)
Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumulative costs. Eur. J. Oper. Res. 189(3), 1345–1357 (2008)
Boenchendorf, K.: Reihenfolgenprobleme/mean-flow-time sequencing. Mathematical Systems in Economics 74. Verlagsgruppe AthenÄaum, Hain, Scriptor (1982)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)
Chenery, H., Watanabe, T.: International comparisons of the structure of production. Econometrica 26, 487–521 (1958)
Chimani, M., Hungerländer, P.: Exact approaches to multilevel vertical orderings. INFORMS J. Comput. 25(4), 611–624 (2013)
Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, GSIA, Cranegie-Mellon University (1976)
Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2011)
Cvetković, D., Cangalović, M., Kovačevič-Vujčić, V.: Semidefinite programming methods for the symmetric traveling salesman problem. In: Proceedings of the 7th International IPCO Conference on Integer Programming and Combinatorial Optimization, pp. 126–136. Springer, Berlin (1999)
de Klerk, E., Pasechnik, D.V., Sotirov, R.: On semidefinite programming relaxations of the Traveling Salesman Problem. SIAM J. Optim. 19(4), 1559–1573 (2008)
Deza, M., Laurent, M.: Geometry of Cuts and Metrics, Volume 15 of Algorithms and Combinatorics. Springer, Berlin (1997)
Duarte, A., Martí, R., Álvarez, A., Ángel-Bello, F.: Metaheuristics for the linear ordering problem with cumulative costs. Eur. J. Oper. Res. 216(2), 270–277 (2012)
Fischer, I., Gruber, G., Rendl, F., Sotirov, R.: Computational experience with a bundle method for semidefinite cutten plane relaxations of max-cut and equipartition. Math. Progr. 105, 451–469 (2006)
Fishburn, P.C.: Induced binary probabilities and the linear ordering polytope: a status report. Math. Soc. Sci. 23(1), 67–80 (1992)
Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: STOC ’74: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 47–63. Springer, New York (1974)
Glover, F., Klastorin, T., Klingman, D.: Optimal weighted ancestry relationships. Manag. Sci. 20, 1190–1193 (1974)
Grundel, D., Jeffcoat, D.: Formulation and solution of the target visitation problem. In: Proceedings of the AIAA 1st Intelligent Systems Technical Conference (2004)
Gutin, G., Punnen, A.: The Traveling Salesman Problem and its Variations. Springer, Berlin (2002)
Helmberg, C., Rendl, F., Vanderbei, R., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)
Hildenbrandt, A.: Benchmark instances for the TVP. http://comopt.ifi.uni-heidelberg.de/people/hildenbrandt/TVP/template.html
Hildenbrandt, A., Heismann, O., Reinelt, G.: The target visitation problem. In: Presentation held at the 18th Combinatorial Optimization Workshop in Aussois on January 09, 2014
Hildenbrandt, A., Reinelt, G., Heismann, O.: Integer programming models for the target visitation problem. In: Proceedings of the 16th International Multiconference of the Information Society, vol. A, pp. 569–572 (2013)
Holub, H.-W., Schnabl, H.: Input-Output-Rechnung: Input-Output-Tabellen. Oldenbourg Wissenschaftsverlag (1982)
Hungerländer, P.: New semidefinite programming relaxations for the linear ordering and the traveling salesman problem. Technical report, Alpen-Adria Universität Klagenfurt, Mathematics, Optimization Group, TR-ARUK-M-O-14-03 (2014)
Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Math. Progr. 140(1), 77–97 (2013a)
Hungerländer, P., Rendl, F.: A computational study and survey of methods for the single-row facility layout problem. Comput. Optim. Appl. 55(1), 1–20 (2013b)
Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: performance of exact and heuristic algorithms. J. Graph Algorithms Appl. 1, 1–25 (1997)
Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM 52(4), 602–626 (2005)
Kemeny, J.G.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)
Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25(1), 53–76 (1957)
Leontief, W.: Quantitative input-output relations in the economic system of the united states. Rev. Econ. Stat. 18(3), 105–125 (1936)
Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)
Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)
Martí, R., Reinelt, G.: The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization. Applied Mathematical Sciences, Springer, Berlin (2011)
Martí, R., Reinelt, G., Duarte, A.: A benchmark library and a comparison of heuristic methods for the linear ordering problem. Comput. Optim. Appl. 1–21 (2011)
Murphey, R., Pardalos, P. (eds.): Cooperative Control and Optimization. Springer, Berlin (2002)
Newman, A.: Cuts and orderings: on semidefinite relaxations for the linear ordering problem. In: Jansen, K., Khanna, S., Rolim, J., Ron, D. (eds.) Lecture Notes in Computer Science, vol. 3122, pp. 195–206. Springer, Berlin (2004)
Newman, A., Vempala, S.: Fences are futile: on relaxations for the linear ordering problem. In: Proceedings of the 8th International IPCO Conference on Integer Programming and Combinatorial Optimization, pp. 333–347. Springer, Berlin (2001)
Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric Traveling Salesman Problems. SIAM Rev. 33(1), 60–100 (1991)
Reinelt, G.: The traveling salesman: computational solutions for TSP applications. Springer, Berlin (1994)
Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Progr. 212, 307–335 (2010)
Slater, P.: Inconsistencies in a schedule of paired comparisons. Biometrika 48(3–4), 303–312 (1961)
Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)
Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer Academic, Boston (2000)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Hungerländer, P. A semidefinite optimization approach to the Target Visitation Problem. Optim Lett 9, 1703–1727 (2015). https://doi.org/10.1007/s11590-014-0824-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-014-0824-9