Skip to main content
Log in

On the coupled continuous knapsack problems: projection onto the volume constrained Gibbs N-simplex

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Coupled continuous quadratic knapsack problems (CCK) are introduced in the present study. The solution of a CCK problem is equivalent to the projection of an arbitrary point onto the volume constrained Gibbs N-simplex, which has a wide range of applications in computational science and engineering. Three algorithms have been developed in the present study to solve large scale CCK problems. According to the numerical experiments of this study, the computational costs of presented algorithms scale linearly with the problem size, when it is sufficiently large. Moreover, they show competitive or even superior computational performance compared to the advanced QP solvers. The ease of implementation and linear scaling of memory usage with the problem size are the other benefits of the presented algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For a comprehensive account on bibliography and software corresponding to solution of QP problems visit: http://www.numerical.rl.ac.uk/people/nimg/qp/qp.html.

  2. http://cvxr.com/cvx/.

  3. http://sedumi.ie.lehigh.edu/.

  4. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

  5. http://gurobi.com/.

  6. http://mosek.com/.

  7. More precisely, maximum attainable accuracy by the solver.

References

  1. Baldo, S.: Minimal interface criterion for phase transitions in mixtures of cahn-hilliard fluids. Ann. Inst H. Poincaré (C) Anal. Non Linéaire 7(2), 67–90 (1990)

    MATH  MathSciNet  Google Scholar 

  2. Bertsekas, D.P.: Constrained optimization and lagrange multiplier methods. Computer Science and Applied Mathematics, vol 1. Academic Press, Boston (1982)

  3. Birgin, E., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birgin, E., Martınez, J.M., Raydan, M.: Spectral projected gradient methods: review and perspectives. J. Stat. Softw. 60(3) (2014)

  5. Blank, L., Garcke, H., Sarbu, L., Srisupattarawanit, T., Styles, V., Voigt, A.: Phase-field approaches to structural topology optimization. In: Constrained Optimization and Optimal Control for Partial Differential Equations, pp. 245–256. Springer, Berlin (2012)

  6. Boyd, S., Dattorro, J.: Alternating projections (online note) (2003)

  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  8. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)

  9. Brown, E., Chan, T., Bresson, X.: Completely convex formulation of the chan-vese image segmentation model. Int. J. Comput. Vision 98(1), 103–121 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci. 5(4), 1113–1158 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  12. Dai, Y., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Program. 106(3), 403–421 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Escalante, R., Raydan, M.: Alternating projection methods, vol. 8. SIAM (2011)

  14. Garcke, H., Nestler, B., Stinner, B., Wendler, F.: Allen-cahn systems with volume constraints. Math. Models Methods Appl. Sci. 18(08), 1347–1381 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garcke, H., Nestler, B., Stoth, B.: A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60(1), 295–315 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Connecticut Academy of Arts and Sciences (1877)

  17. Hager, W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17(2), 526–557 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kiwiel, K.: On linear-time algorithms for the continuous quadratic knapsack problem. J. Optim. Theory Appl. 134(3), 549–554 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kiwiel, K.: Breakpoint searching algorithms for the continuous quadratic knapsack problem. Math. Program. 112(2), 473–491 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kiwiel, K.: Variable fixing algorithms for the continuous quadratic knapsack problem. J. Optim. Theory Appl. 136(3), 445–458 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4(4), 1049–1096 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming, vol. 13. SIAM (1994)

  23. Nestler, B., Wendler, F., Selzer, M., Stinner, B., Garcke, H.: Phase-field model for multiphase systems with preserved volume fractions. Phys. Rev. E 78(1), 011604 (2008)

    Article  Google Scholar 

  24. Nocedal, J., Wright, S.: Numerical optimization. Springer (2006)

  25. Pardalos, P.M., Kovoor, N.: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Math. Program. 46(1–3), 321–328 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Robinson, A.G., Jiang, N., Lerme, C.S.: On the continuous quadratic knapsack problem. Math. Program. 55(1–3), 99–108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rosen, J.B.: The gradient projection method for nonlinear programming. Part i. Linear constraints. J. Soc. Ind. Appl. Math. 8(1), 181–217 1960

  28. Steinbach, I., Pezzolla, F., Nestler, B., Seeßelberg, M., Prieler, R., Schmitz, G.J., Rezende, J.L.L.: A phase field concept for multiphase systems. Physica D Nonlin Phenomena 94(3), 135–147 (1996)

    Article  MATH  Google Scholar 

  29. Tavakoli, R.: Multimaterial topology optimization by volume constrained allen-cahn system and regularized projected steepest descent method. Comput. Methods Appl. Mech. Eng. 276, 534–565 (2014)

    Article  MathSciNet  Google Scholar 

  30. Tavakoli, R., Mohseni, S.M.: Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line matlab implementation. Struct. Multidiscip. Optim. 49, 621–642 (2013)

    Article  MathSciNet  Google Scholar 

  31. Tavakoli, R., Zhang, H.: A nonmonotone spectral projected gradient method for large-scale topology optimization problems. Numer. Algebra Control Optim. 2(2), 395–412 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wright, S.J.: Primal-dual interior-point methods, vol. 54. SIAM (1997)

  33. Zhen, L., Wei, G., Chongmin, S.: Design of multi-phase piezoelectric actuators. J. Int. Mater. Syst. Struct. 21(8), 1851–1865 (2010)

    Google Scholar 

  34. Zhou, S., Wang, M.Y.: Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct. Multidiscip. Optim. 33(2), 89–111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thanks Ernesto G. Birgin for the suggestion of alternating projection algorithm for the solution of problem studied in this work. Helpful comments by two anonymous reviewers which improve the presentation of our paper are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Tavakoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, R. On the coupled continuous knapsack problems: projection onto the volume constrained Gibbs N-simplex. Optim Lett 10, 137–158 (2016). https://doi.org/10.1007/s11590-015-0866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0866-7

Keywords

Mathematics Subject Classification

Navigation