Abstract
We address a particular class of bilevel linear programming problems in which all the variables are discrete. The main computational complexities are analyzed and two enhanced exact algorithms are proposed. The rationale behind these two algorithms is described and a modified version is presented for both. A common test bed is used to assess their computational efficiency along with a comparison with an existing benchmark algorithm.





Similar content being viewed by others
References
Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bilevel programming. Optim. Lett. 1(3), 259–267 (2007)
Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0–1 programming problems. J. Optim. Theory. Appl. 93(2), 273–300 (1997)
Audet, C., Savard, G., Zghal, W.: New branch-and-cut algorithm for bilevel linear programming. J. Optim. Theory. Appl. 134(2), 353–370 (2007)
Bard, J.F.: Practical bilevel optimization: algorithms and applications. Kluwer Academic Publishers, Dordrecht (1998)
Bard, J.F., Moore, J.T.: A branch and bound algorithm for the bilevel programming problem. SIAM. J. Sci. Stat. Comput. 11(2), 281–292 (1990)
Bialas, W., Karwan, M.: On two-level optimization. IEEE. Trans. Autom. Control. 27(1), 211–214 (1982)
Bialas, W., Karwan, M.: Two-level linear programming. Manag. Sci. 30(8), 1004–1020 (1984)
Bianco, L., Caramia, M., Giordani, S.: A bilevel flow model for hazmat transportation network design. Transp. Res. Part. C. 17, 175–196 (2009)
Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals. Oper. Res. 153(1), 235–256 (2007)
Dempe, S.: Foundation of bilevel programming. Kluwer Academic Publications (2002)
DeNegre, S.T., Ralphs, T.K.: A branch-and-cut algorithm for integer bilevel linear programs. Oper. Res. Cyber. Infrastruct. 47(2), 65–78 (2009)
Fortuny-Amat, J., McCarl, B.: A representation and economic interpretation of a two-level programming problem. J. Oper. Res. Soc. 32(9), 783–792 (1981)
Jeroslow, R.G.: The polynomial hierarchy and a simple model for competitive analysis. Math. Program. 32(2), 146–164 (1985)
Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010—mixed integer programming library version 5. Math. Program. Comput. 3(2), 103–163 (2011)
Mansi, R., Alves, C., de Carvalho, J.M.V., Hanafi, S.: An exact algorithm for bilevel 0–1 knapsack problems. Hindawi Publishing Corporation Mathematical Problems in Engineering, (2012)
Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921 (1990)
Shiquan, W.U., Yang, C., Marcotte, P.: A cutting plane method for linear bilevel programs. Syst. Sci. Math. Sci. 11(2), 125–133 (1998)
Vicente, L.N., Savard, G., Judice, J.J.: Discrete linear bilevel programming problem. J. Optim. Theory. Appl. 89(3), 597–614 (1996)
Wen, U.P., Hsu, S.T.: Linear bi-level programming problems—a review. J. Oper. Res. Soc. 42(2), 125–133 (1991)
Wen, U.P., Huang, A.D.: A simple tabu search method to solve the mixed-integer linear bilevel programming problem. Eur. J. Oper. Res. 88(3), 563–571 (1996)
Wen, U.P., Yang, Y.H.: Algorithms for solving the mixed integer two-level linear programming problem. Comput. Oper. Res. 17(2), 133–142 (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Caramia, M., Mari, R. Enhanced exact algorithms for discrete bilevel linear problems. Optim Lett 9, 1447–1468 (2015). https://doi.org/10.1007/s11590-015-0872-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-015-0872-9