Skip to main content
Log in

On solvability recognition for interval linear systems of equations

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The paper considers the problem of recognizing solvability (nonemptiness of the solution set) for interval systems of linear algebraic equations. We introduce a quantitative measure of the membership of a point in the solution set, the so-called “recognizing functional” of the solution set. As the result, the decision on solvability of the interval linear systems reduces to global maximization of the recognizing functional. Additionally, the specific value of this maximum and its argument provide us with important quantitative information of the solvability supply or its deficiency, which can used for the correction of the interval system in a desired sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beeck, H.: Über die Struktur und Abschätzungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten. Computing 10, 231–244 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)

    MATH  Google Scholar 

  3. Jansson, C.: Calculation of exact bounds for the solution set of linear interval systems. Linear Algebra Appl. 251, 321–340 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kearfott, R.B., Nakao, M., Neumaier, A., Rump, S., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. Comput. Technol. 15(1), 7–13 (2010)

    MATH  Google Scholar 

  5. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  6. Lakeyev, A.V., Noskov, S.I.: On the solution set to linear equation with intervally defined operator and right-hand side. Sib. Math. J. 35(5), 1074–1084 (1994). (in Russian)

    Google Scholar 

  7. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  8. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  9. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970, 1997)

  10. Sharaya, I.A., Shary, S.P.: Reserve as recognizing functional for AE-solutions to interval system of linear equations. In: 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2014, Book of Abstracts, Dept. of Computer Science, University of Würzburg, Germany, 21–26 Sept 2014, pp. 145–146. University of Würzburg (2014)

  11. Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliable Comput. 8(5), 321–418 (2002). http://www.nsc.ru/interval/shary/Papers/ANewTech.pdf

  12. Shary, S.P.: A new method for inner estimation of solution sets to interval linear systems. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties (Mathematical Engineering, vol. 3), pp. 21–42. Springer, Berlin (2011)

  13. Shary, S.P.: Solvability of interval linear equations and data analysis under uncertainty. Autom. Remote Control 73(2), 310–322 (2012). doi:10.1134/S0005117912020099

    Article  MathSciNet  MATH  Google Scholar 

  14. Shary, S.P.: Maximum consistency method for data fitting under interval uncertainty. In: Proceedings of 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2014, Book of Abstracts, Department of Computer Science, University of Würzburg, Germany, September 21–26, 2014, pp. 147–148. University of Würzburg (2014)

  15. Shary, S.P.: Finite-Dimensional Interval Analysis. XYZ, Novosibirsk (2015). http://www.nsc.ru/interval/Library/InteBooks (in Russian)

  16. Shary, S.P., Sharaya, I.A.: Recognizing solvability of interval equations and its application to data analysis. Comput. Technol. 18(3), 80–109 (2013). http://www.ict.nsc.ru/jct/t18n3?l=eng (in Russian)

  17. Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer, Boston (1998)

    Book  MATH  Google Scholar 

  18. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structure. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, In Honor of the 60th Birthday of Panos M. Pardalos, pp. 465–501. Springer, New York (2014). doi:10.1007/978-1-4939-0808-0_23

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey P. Shary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shary, S.P., Sharaya, I.A. On solvability recognition for interval linear systems of equations. Optim Lett 10, 247–260 (2016). https://doi.org/10.1007/s11590-015-0891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0891-6

Keywords

Mathematics Subject Classification