Skip to main content
Log in

A Riemannian subspace limited-memory SR1 trust region method

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we present a new trust region algorithm on any compact Riemannian manifolds using subspace techniques. The global convergence of the method is proved and local \(d+1\)-step superlinear convergence of the algorithm is presented, where d is the dimension of the Riemannian manifold. Our numerical results show that the proposed subspace algorithm is competitive to some recent developed methods, such as the LRTR-SR1 method, the LRTR-BFGS method, the Riemannian CG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.-A., Baker, C.G., Gallivan, K.A.: A truncated CG style method for symmetric generalized eigenvalue problems. J. Comput. Appl. Math. 189, 274–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Absil, P.-A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7, 303–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Absil, P.-A., Baker, C.G., Gallivan, K.A.: Accelerated line-search and trust-region methods. SIAM J. Numer. Anal. 47, 997–1018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  5. Baker, C.G.: Riemannian Manifold Trust-region Methods with Applications to Eigen problems. PhD thesis, School of Computational Science, Florida State University (2008)

  6. Baker, C.G., Absil, P.-A., Gallivan, K.A.: An implicit trust-region method on Riemannian manifolds. IMA J. Numer. Anal. 28, 665–689 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)

    MATH  Google Scholar 

  8. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their use in limited-memory methods. Math. Program. 63, 129–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Byrd, R.H., Schnabel, R.B., Schultz, G.A.: Approximate solution of the trust regions problem by minimization over two-dimensional subspaces. Math. Program. 40, 247–263 (1988)

    Article  MATH  Google Scholar 

  10. Erway, J.B., Gill, P.E.: A subspace minimization method for the trust-region step. SIAM J. Optim. 20, 1439–1461 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gill, P.E., Leonard, M.W.: Reduced-Hessian quasi-Newton methods for unconstrained optimization. SIAM J. Optim. 12, 209–237 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, W.: Optimization Algorithms on Riemannian Manifolds with Applications. PhD thesis, Florida State University (2013)

  13. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

  14. Qi, C.H.: Numerical Optimization Methods on Riemannian Manifolds. PhD thesis, Florida State University (2011)

  15. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sato, H., Iwai, T.: Optimization algorithms on the Grassmann manifold with application to matrix eigenvalue problems. Jpn. J. Ind. Appl. Math. 31, 355–400 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23, 1214–1236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Z., Wen, Z., Yuan, Y.: A subspace trust region method for large scale unconstrained optimization. In: Yuan, Y. (ed.) Numerical Linear Algebra and Optimization, pp. 265–274. Science Press, Beijing (2004)

    Google Scholar 

  19. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142, 397–434 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z., Yuan, Y.: A subspace implementation of quasi-Newton trust region methods for unconstrained optimization. Numer. Math. 104, 241–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, Y., Stoer, J.: A subspace study on conjugate gradient algorithms. Z. Angew. Math. Mech. 75, 69–77 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of Wei Hong Yang was supported by the National Natural Science Foundation of China No. 11371102 and NSFC Key Project 91330201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hejie Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Yang, W.H. A Riemannian subspace limited-memory SR1 trust region method. Optim Lett 10, 1705–1723 (2016). https://doi.org/10.1007/s11590-015-0977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0977-1

Keywords