Abstract
The problem of finding static-arbitrage bounds on basket option prices has received a growing attention in the literature. In this paper, we focus on the lower bound case and propose a novel efficient solution procedure that is based on the separation problem. The computational burden of the proposed method is polynomial in the input data size. We also discuss the case of possibly negative weight vectors which can be applied to spread options.


Similar content being viewed by others
References
Carmona, R., Durrleman, V.: Pricing and hedging spread options. SIAM Rev. 45, 627–685 (2003)
d’Aspremont, A., El Ghaoui, L.: Static arbitrage bounds on basket option prices. Math. Program. Ser. A. 106, 467–489 (2006)
Daum, S., Werner, R.: A novel feasible discretization method for linear semi-infinite programming applied to basket option pricing. Optimization. 60, 1379–1398 (2011)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer-Verlag, Berlin (1988)
Hobson, D., Laurence, P., Wang, T.-H.: Static-arbitrage optimal subreplicating strategies for basket options. Insur. Math. Econ. 37, 553–572 (2005)
Hobson, D., Laurence, P., Wang, T.-H.: Static-arbitrage upper bounds for the prices of basket options. Quant. Financ. 5, 329–342 (2005)
Laurence, P., Wang, T.-H.: Sharp upper and lower bounds for basket options. Appl. Math. Financ. 12, 253–282 (2005)
Nemhauser, G., Wolsey, L.: Integer and combinatorial optimization. Wiley, New York (1999)
Peña, J., Saynac, X., Vera, J.C., Zuluaga, L.F.: Computing general static-arbitrage bounds for European basket options via Dantzig-Wolfe decomposition. Algorithmic Oper. Res. 5, 65–74 (2010)
Peña, J., Vera, J.C., Zuluaga, L.F.: Static-arbitrage lower bounds on the prices of basket options via linear programming. Quant. Financ. 10, 819–827 (2010)
Peña, J., Vera, J.C., Zuluaga, L.F.: Computing arbitrage upper bounds on basket options in the presence of bid-ask spreads. Eur. J. Oper. Res. 222, 369–376 (2012)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
Tankov, P.: Improved Frechet bounds and model-free pricing of multi-asset options. J. Appl. Probab. 48, 389–403 (2011)
Acknowledgments
The authors thank Professors Peña and Zuluaga for sending their code and paper. Kim’s work was supported by the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2014R1A1A2054868).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cho, H., Kim, KK. & Lee, K. Computing lower bounds on basket option prices by discretizing semi-infinite linear programming. Optim Lett 10, 1629–1644 (2016). https://doi.org/10.1007/s11590-015-0987-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-015-0987-z