Abstract
We introduce a-posteriori and a-priori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the NLP relaxation of a mixed-integer nonlinear optimization problem. Our analysis mainly bases on the construction of a tractable approximation of the so-called grid relaxation retract. Under appropriate Lipschitz assumptions on the defining functions, we thereby generalize and slightly improve results for the mixed-integer linear case from Stein (Mathematical Programming, 2015, doi:10.1007/s10107-015-0872-7). In particular, we identify cases in which the optimality and feasibility errors tend to zero at an at least linear rate for increasingly refined meshes.


Similar content being viewed by others
References
Auslender, A., Crouzeix, J.-P.: Global regularity theorems. Math. Oper. Res. 13, 243–253 (1988)
Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)
Azé, D.: A survey on error bounds for lower semicontinuous functions. In: Proceedings of 2003 MODE-SMAI Conference, EDP Sci., Les Ulis, pp. 1–17 (2003)
Baum, S.P., Trotter Jr, L.E.: Integer rounding for polymatroid and branching optimization problems. SIAM J. Algebraic Discrete Methods 2, 416–425 (1981)
Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer linear programming. Math. Progr. 34, 251–264 (1986)
Deng, S.: Computable error bounds for convex inequality systems in reflexive Banach Spaces. SIAM J. Optim 7, 274279 (1997)
Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A.(eds.): 50 Years of Integer Programming 1958–2008: from the early years to the State-of-the-Art. Springer (2010)
Güler, O., Hoffman, A.J., Rothblum, U.G.: Approximations to solutions to systems of linear inequalities. SIAM J. Matrix Anal. Appl. 16, 688–696 (1995)
Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker, New York (1992)
Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)
Klatte D.: Eine Bemerkung zur parametrischen quadratischen Optimierung, Seminarbericht Nr. 50, Sektion Mathematik der Humboldt-Universität zu Berlin, pp. 174–185 (1983)
Lewis, A.S., Pang, J.S.: Error bounds for convex inequality systems. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized convexity, generalized monotonicity: recent results, pp. 75–110. Kluwer Academic Publishers (1996)
Li, G.: Global error bounds for piecewise convex polynomials. Math. Progr. 137, 37–64 (2013)
Li, G., Mordukhovich, B.S., Pham, T.S.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math. Progr. 153, 333–362 (2015)
Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)
Luo, Z.Q., Pang, J.S.: Error bounds for analytic systems and their applications. Math. Progr. 67, 1–28 (1994)
Mangasarian, O.L.: A condition number for differentiable convex inequalities. Math. Oper. Res. 10, 175–179 (1985)
Mangasarian, O.L., Shiau, T.H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J. Control Optim. 25, 583–595 (1987)
Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, Cambridge (1990)
Ngai, H.V., Kruger, A., Théra, M.: Stability of error bounds for semi-infinite convex constraint systems. SIAM J. Optim. 20, 2080–2096 (2010)
Pang, J.-S.: Error bounds in mathematical programming. Math. Progr. 79, 299–332 (1997)
Robinson, S.M.: An application of error bounds for convex programming in a linear space. SIAM J. Control Optim. 13, 271–273 (1975)
Stein, O.: Error bounds for mixed integer linear optimization problems. Math. Progr. (2015). doi:10.1007/s10107-015-0872-7
Acknowledgments
The author is grateful to the anonymous referee and the associate editor for their precise and substantial remarks on an earlier version of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stein, O. Error bounds for mixed integer nonlinear optimization problems. Optim Lett 10, 1153–1168 (2016). https://doi.org/10.1007/s11590-016-1011-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-016-1011-y