Skip to main content
Log in

ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The algorithmic framework ARGONAUT is presented for the global optimization of general constrained grey-box problems. ARGONAUT incorporates variable selection, bounds tightening and constrained sampling techniques, in order to develop accurate surrogate representations of unknown equations, which are globally optimized. ARGONAUT is tested on a large set of test problems for constrained global optimization with a large number of input variables and constraints. The performance of the presented framework is compared to that of existing techniques for constrained derivative-free optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Audet, C., Bechard, V., Chaouki, J.: Spent potliner treatment process optimization using a MADS algorithm. Optim. Eng. 9(2), 143–160 (2008)

    Article  MATH  Google Scholar 

  2. Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boukouvala, F., Ierapetritou, M.G.: Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing. J. Pharm. Innov. 8(2), 131–145 (2013)

    Article  Google Scholar 

  4. Caballero, J.A., Grossmann, I.E.: An algorithm for the use of surrogate models in modular flowsheet optimization. Aiche J. 54(10), 2633–2650 (2008)

    Article  Google Scholar 

  5. Egea, J.A., Rodriguez-Fernandez, M., Banga, J.R., Marti, R.: Scatter search for chemical and bio-process optimization. J. Global Optim. 37(3), 481–503 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fahmi, I., Cremaschi, S.: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models. Comput. Chem. Eng. 46, 105–123 (2012)

    Article  Google Scholar 

  7. Fowler, K.R., Reese, J.P., Kees, C.E., Dennis Jr., J.E., Kelley, C.T., Miller, C.T., Audet, C., Booker, A.J., Couture, G., Darwin, R.W., Farthing, M.W., Finkel, D.E., Gablonsky, J.M., Gray, G., Kolda, T.G.: Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water Resour. 31(5), 743–757 (2008)

    Article  Google Scholar 

  8. Graciano, J.E.A., Roux, G.A.C.L.: Improvements in surrogate models for process synthesis. Application to water network system design. Comput. Chem. Eng. 59, 197–210 (2013)

    Article  Google Scholar 

  9. Hemker, T., Fowler, K., Farthing, M., Stryk, O.: A mixed-integer simulation-based optimization approach with surrogate functions in water resources management. Optim. Eng. 9(4), 341–360 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henao, C.A., Maravelias, C.T.: Surrogate-based superstructure optimization framework. AIChE J. 57(5), 1216–1232 (2011)

    Article  Google Scholar 

  11. Kleijnen, J.P.C., van Beers, W., van Nieuwenhuyse, I.: Constrained optimization in expensive simulation: novel approach. Eur. J. Oper. Res. 202(1), 164–174 (2010)

    Article  MATH  Google Scholar 

  12. Wan, X.T., Pekny, J.F., Reklaitis, G.V.: Simulation-based optimization with surrogate models—application to supply chain management. Comput. Chem. Eng. 29(6), 1317–1328 (2005)

    Article  Google Scholar 

  13. Espinet, A., Shoemaker, C., Doughty, C.: Estimation of plume distribution for carbon sequestration using parameter estimation with limited monitoring data. Water Resour. Res. 49(7), 4442–4464 (2013)

    Article  Google Scholar 

  14. Hasan, M.M.F., Baliban, R.C., Elia, J.A., Floudas, C.A.: Modeling, simulation, and optimization of postcombustion CO\(_{2}\) capture for variable feed concentration and flow rate. 2. Pressure swing adsorption and vacuum swing adsorption processes. Ind. Eng. Chem. Res. 51(48), 15665–15682 (2013)

    Article  Google Scholar 

  15. Hasan, M.M.F., Boukouvala, F., First, E.L., Floudas, C.A.: Nationwide, regional, and statewide \(CO_{2}\) capture, utilization, and sequestration supply chain network optimization. Ind. Eng. Chem. Res. 53(18), 7489–7506 (2014)

    Article  Google Scholar 

  16. Li, S., Feng, L., Benner, P., Seidel-Morgenstern, A.: Using surrogate models for efficient optimization of simulated moving bed chromatography. Comput. Chem. Eng. 67, 121–132 (2014)

    Article  Google Scholar 

  17. Forrester, A.I.J., Sóbester, A., Keane, A.J.: Engineering Design via Surrogate Modelling—A Practical Guide. Wiley, Chichester (2008)

    Book  Google Scholar 

  18. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization, vol. 8. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  19. Martelli, E., Amaldi, E.: PGS-COM: a hybrid method for constrained non-smooth black-box optimization problems: brief review, novel algorithm and comparative evaluation. Comput. Chem. Eng. 63, 108–139 (2014)

    Article  Google Scholar 

  20. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res. 252, 701–727(2016) (in press). doi:10.1016/j.ejor.2015.12.018

  22. Bjorkman, M., Holmstrom, K.: Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng. 1(4), 373–397 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Multidiscip. Optim. 17(1), 1–13 (1999)

    Article  Google Scholar 

  24. Boukouvala, F., Ierapetritou, M.G.: Derivative-free optimization for expensive constrained problems using a novel expected improvement objective function. AIChE J. 60(7), 2462–2474 (2014)

    Article  Google Scholar 

  25. Conn, A.R., Le Digabel, S.: Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optim. Methods Softw. 28(1), 139–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1), 50–79 (2009)

    Article  Google Scholar 

  27. Jakobsson, S., Patriksson, M., Rudholm, J., Wojciechowski, A.: A method for simulation based optimization using radial basis functions. Optim. Eng. 11(4), 501–532 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Regis, R.G.: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points. Eng. Optim. 46(2), 218–243 (2014)

    Article  MathSciNet  Google Scholar 

  31. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using radial basis functions. J. Global Optim. 31(1), 153–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yao, W., Chen, X.Q., Huang, Y.Y., van Tooren, M.: A surrogate-based optimization method with RBF neural network enhanced by linear interpolation and hybrid infill strategy. Optim. Methods Softw. 29(2), 406–429 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Muller, J., Shoemaker, C.A.: Influence ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization methods. J. Glob. Optim. 60(2), 123–144 (2014)

    Article  MATH  Google Scholar 

  34. Viana, F.A.C., Haftka, R.T., Watson, L.T.: Efficient global optimization algorithm assisted by multiple surrogate techniques. J. Glob. Optim. 56(2), 669–689 (2013)

    Article  MATH  Google Scholar 

  35. Floudas, C.A.: Deterministic Global Optimization, vol. 37. Springer Science & Business Media, New York (1999)

    Google Scholar 

  36. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Global Optim. 45(1), 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Boukouvala, F., Hasan, M.M.F., Christodoulos, A.F.: Global optimization of constrained grey-box problems: new method and application to constrained PDEs for pressure swing adsorption. J. Global Optim. (2015). doi:10.1007/s10898-015-0376-2

  38. Misener, R., Floudas, C.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Global Optim. 59(2–3), 503–526 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7(2), 143–182 (1995)

  40. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Global Optim. 57(1), 3–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, Z., Floudas, C.A.: Optimal scenario reduction framework based on distance of uncertainty distribution and output performance: I. Single reduction via mixed integer linear optimization. Comput. Chem. Eng. 70, 50–65 (2014)

    Article  Google Scholar 

  42. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press (1981)

  43. Holmstrom, K., Quttineh, N.-H., Edvall, M.M.: An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization. Optim. Eng. 9(4), 311–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Adjengue, L., Audet, C., Ben Yahia, I.: A variance-based method to rank input variables of the mesh adaptive direct search algorithm. Optim. Lett. 8(5), 1599–1610 (2014). doi:10.1007/s11590-013-0688-4

    Article  MathSciNet  MATH  Google Scholar 

  46. Fan, J., Lv, J.: Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B (Statistical Methodology) 70(5), 849–911 (2008). doi:10.1111/j.1467-9868.2008.00674.x

    Article  MathSciNet  Google Scholar 

  47. Fan, J., Song, R.: Sure independence screening in generalized linear models with NP-dimensionality. Ann. Stat. 38(6) 3567–3604 (2010). doi:10.1214/10-AOS798

  48. Fan, J., Feng, Y., Saldana, D.F., Samworth, R., Wu, Y.: Sure independence screening version 0.7-5 (2015). https://cran.r-project.org/web/packages/SIS/index.html

  49. Misener, R., Floudas, C.A.: Global optimization of mixed-integer models with quadratic and signomial functions: a review. Appl. Comput. Math. 11, 317–336 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Berlin (1999)

    Book  MATH  Google Scholar 

  51. Abramson, M.A., Audet, C., Couture, G., Dennis, J.E., S, Tribes, C.: The NOMAD Project (2009). https://www.gerad.ca/nomad

  52. Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. (TOMS) 37(4), 1–15 (2011)

    Article  MathSciNet  Google Scholar 

  53. Runarsson, T.P., Xin, Y.: Search biases in constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 35(2), 233–243 (2005). doi:10.1109/TSMCC.2004.841906

    Article  Google Scholar 

  54. Johnson, S.G.: The NLopt nonlinear-optimization package (2015). http://ab-initio.mit.edu/nlopt

  55. Powell, M.J.D.: A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis. Mathematics and Its Applications, vol. 275, pp. 51–67. Springer, Netherlands (1994)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Science Foundation (CBET-0827907, CBET-1263165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos A. Floudas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 340 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukouvala, F., Floudas, C.A. ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems. Optim Lett 11, 895–913 (2017). https://doi.org/10.1007/s11590-016-1028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1028-2

Keywords

Navigation