Skip to main content
Log in

On retracts, absolute retracts, and foldings in cographs

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A retract of a graph G is an induced subgraph H of G such that there exists a homomorphism \(\rho :G \rightarrow H\). When both G and H are cographs, we show that the problem to determine whether H is a retract of G is NP-complete; moreover, we show that this problem on cographs is fixed-parameter tractable when parameterized by the size of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the retract problem becomes tractable in polynomial time. The retract problem is also solvable in linear time when one cograph is given as an induced subgraph of the other. We characterize absolute retracts for the class of cographs. Foldings generalize retractions. We show that the problem to fold a trivially perfect graph onto a largest possible clique is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bandelt, H.: Retracts of hypercubes. J. Graph Theory 8, 501–510 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandelt, H., Dählmann, A., Schütte, H.: Absolute retracts of bipartite graphs. Discrete Appl. Math. 16, 191–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.: Achromatic number is NP-complete for cographs and interval graphs. Inf. Process. Lett. 31, 135–138 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chung, M.: \(O(n^ {2.5})\) time algorithms for the subgraph homomorphism problem on trees. J. Algorithms 8, 106–112 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corneil, D., Perl, Y., stewart, L.: A linear recognition algorithm for cographs. SIAM J. Comput. 14, 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language Theoretic Approach. In: Encyclopedia of mathematics and its applications, vol. 138. Cambridge University Press, Cambridge (2012)

  7. Damaschke, P.: Induced subgraph isomorphism for cographs is NP-complete. In: Proceedings of \(16{\rm th}\) WG’90. Springer, LNCS 484, pp. 72–78 (1991)

  8. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combinatorica 19, 487–505 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fomin, F., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomorphisms. Theory Comput. Syst. 41, 381–393 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golovach, P., Lidický, B., Martin, B., Paulusma, D.: Finding vertex-surjective graph homomorphisms. Acta Inf. 49, 381–394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golumbic, M.: Trivially perfect graphs. Discrete Math. 24, 105–107 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golumbic, M., Goss, C.: Perfect elimination and chordal bipartite graphs. J. Graph Theory 2, 155–163 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Götz, M., Koch, C., Martens, W.: Efficient algorithms for the tree homeomorphism problem. In: Proceedings of the \(11{{\rm th}}\) International Conference on Database Programming Languages, Springer, LNCS 4797, pp. 17–31 (2007)

  15. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1). Article no. 1 (2007). doi:10.1145/1206035.1206036

  16. Grohe, M.: Personal communication (2012)

  17. Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Hahn, G., Sabidussi, G. (eds.) Graph symmetry—Algebraic Methods and Applications, NATO ASI Series C: Mathematical and Physical Sciences, vol. 497, pp. 107–166, Kluwer, The Netherland (1997)

  18. Harary, F., Hedetniemi, S.: The achromatic number of a graph. J. Comb. Theory 8, 154–161 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hell, P.:Rétractions de graphes. Ph.D. Thesis, Université de Montréal (1972)

  20. Hell, P., Nešetřil, J.: The core of a graph. Discrete Math. 109, 117–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hell, P., Nešetřil, J.: Graphs Homomorph. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  22. Howorka, E.: A characterization of distance-hereditary graphs. Q. J. Math. 28, 417–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kilpeläinen, P., Mannila, H.: Quey primitives for tree-structured data. In: Proceedings of the \(5^{{\rm th}}\) Annual Symposium on Combinatorial Pattern Matching, Springer, LNCS 807, pp. 213–225 (1994)

  24. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM J. Comput. 24, 340–356 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marx, D., Schlotter, I.: Parameterized graph cleaning problems. Discrete Appl. Math. 157, 3258–3267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marx, D., Schlotter, I.: Cleaning interval graphs. Algorithmica 65, 275–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Máté, A.: A lower estimate for the achromatic number of irreducible graphs. Discrete Math. 33, 171–183 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matoušek, Thomas, R.: On the complexity of finding iso- and other morphisms for partial \(k\)-trees. Discrete Math. 108, 343–364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pesch, E., Poguntke, W.: A characterization of absolute retracts of \(n\)-chromatic graphs. Discrete Math. 57, 99–104 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pinter, R., Rokhlenko, O., Tsur, D., Ziv-Ukelson, M.: Approximate labelled subtree homeomorphism. J. Discrete Algorithms 6, 480–496 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reyner, S.: An analysis of good algorithms for the subtree problem. SIAM J. Comput. 6, 730–732 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shamir, R., Tsur, D.: Faster subtree isomorphism. J. Algorithms 33, 267–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sikora, F.: An (almost complete) state of the art around the graph motif problem. Universit’e Paris-Est, LIGM - UMR CNRS 8049, France (2012)

  34. Wolk, E.: A note on “The comparability graph of a tree”. Proc. Am. Math. Soc. 16, 17–20 (1965)

    MathSciNet  MATH  Google Scholar 

  35. Vikas, N.: A complete and equal computational complexity classification of compaction and retraction to all graphs with at most four vertices and some general results. J. Comput. Syst. Sci. 71, 406–439 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous referees for their careful reading with corrections and useful comments which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Li Wang.

Additional information

The preliminary version of this paper was published in a conference proceedings: Graph-Theoretic Concepts in Computer Science Volume 8165 of the series Lecture Notes in Computer Science pp. 321–332.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kloks, T., Wang, YL. On retracts, absolute retracts, and foldings in cographs. Optim Lett 12, 535–549 (2018). https://doi.org/10.1007/s11590-017-1126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1126-9

Keywords

Navigation