Skip to main content
Log in

Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider a box-constrained global optimization problem with a Lipschitz-continuous objective function and an unknown Lipschitz constant. The well known derivative-free global-search DIRECT (DIvide a hyper-RECTangle) algorithm performs well solving such problems. However, the efficiency of the DIRECT algorithm deteriorates on problems with many local optima and when the solution with high accuracy is required. To overcome these difficulties different regimes of global and local search are introduced or the algorithm is combined with local optimization. In this paper we investigate a different direction of improvement of the DIRECT algorithm and propose a new strategy for the selection of potentially optimal rectangles, what does not require any additional parameters or local search subroutines. An extensive experimental investigation reveals the effectiveness of the proposed enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baker, C.A., Watson, L.T., Grossman, B., Mason, W.H., Haftka, R.T.: Parallel global aircraft configuration design space exploration. In: Tentner, A. (ed.) High Performance Computing Symposium 2000, pp. 54–66. Soc. for Computer Simulation Internat (2000)

  2. Björkman, M., Holmström, K.: Global optimization using the direct algorithm in Matlab. Adv. Model. Optim. 1(2), 17–37 (1999)

    MATH  Google Scholar 

  3. Finkel, D.E.: MATLAB source code for DIRECT. http://www4.ncsu.edu/~ctk/Finkel_Direct/ (2004). Online; Accessed 22 March 2017

  4. Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36(4), 597–608 (2006). https://doi.org/10.1007/s10898-006-9029-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Gablonsky, J.M.: Modifications of the Direct algorithm. Ph.D. thesis, North Carolina State University (2001)

  6. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001). https://doi.org/10.1023/A:1017930332101

    Article  MathSciNet  MATH  Google Scholar 

  7. Hedar, A.: Test functions for unconstrained global optimization. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm (2005). Online; Accessed 22 March 2017

  8. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and Its Application. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  9. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993). https://doi.org/10.1007/BF00941892

    Article  MathSciNet  MATH  Google Scholar 

  10. Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003). https://doi.org/10.1007/s00211-002-0419-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, Q., Cheng, W.: A modified DIRECT algorithm with bilevel partition. J. Glob. Optim. 60(3), 483–499 (2014). https://doi.org/10.1007/s10898-013-0119-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Q., Yang, G., Zhang, Z., Zeng, J.: Improving the convergence rate of the DIRECT global optimization algorithm. J. Glob. Optim. 67(4), 851–872 (2017). https://doi.org/10.1007/s10898-016-0447-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems. J. Glob. Optim. 62(2), 205–227 (2015). https://doi.org/10.1007/s10898-014-0241-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations for the solution for large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010). https://doi.org/10.1007/s10589-008-9217-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48(1), 113–128 (2010). https://doi.org/10.1007/s10898-009-9515-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Liuzzi, G., Lucidi, S., Piccialli, V.: Exploiting derivative-free local searches in direct-type algorithms for global optimization. Comput. Optim. Appl. 65, 449–475 (2016). https://doi.org/10.1007/s10589-015-9741-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Mockus, J., Paulavičius, R., Rusakevičius, D., Šešok, D., Žilinskas, J.: Application of reduced-set Pareto–Lipschitzian optimization to truss optimization. J. Glob. Optim. 67(1–2), 425–450 (2017). https://doi.org/10.1007/s10898-015-0364-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Paulavičius, R., Chiter, L., Žilinskas, J.: Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants. J. Glob. Optim. (1), 1–17 (2016). https://doi.org/10.1007/s10898-016-0485-6

    Article  MathSciNet  Google Scholar 

  19. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014). https://doi.org/10.1007/s10898-014-0180-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf. Technol. Control 36(4), 383–387 (2007)

    Google Scholar 

  21. Paulavičius, R., Žilinskas, J.: Global optimization using the branch-and-bound algorithm with a combination of Lipschitz bounds over simplices. Technol. Econ. Dev. Econ. 15(2), 310–325 (2009). https://doi.org/10.3846/1392-8619.2009.15.310-325

    Article  MATH  Google Scholar 

  22. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2013). https://doi.org/10.1007/s10898-013-0089-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-9093-7

    Book  MATH  Google Scholar 

  24. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10(2), 237–246 (2016). https://doi.org/10.1007/s11590-014-0772-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010). https://doi.org/10.1007/s11590-009-0156-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  27. Piyavskii, S.A.: An algorithm for finding the absolute minimum of a function. Theory Optim. Solut. 2, 13–24 (1967). https://doi.org/10.1016/0041-5553(72)90115-2. In Russian

    Article  MathSciNet  Google Scholar 

  28. Sergeyev, Y.D.: On convergence of divide the best global optimization algorithms. Optimization 44(3), 303–325 (1998)

    Article  MathSciNet  Google Scholar 

  29. Sergeyev, Y.D., Kvasov, D.E.: Global search based on diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006). https://doi.org/10.1137/040621132

    Article  MathSciNet  MATH  Google Scholar 

  30. Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008). In Russian

    MATH  Google Scholar 

  31. Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the Diagonal Approach. SpringerBriefs in Optimization. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-7199-2

    Book  MATH  Google Scholar 

  32. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9, 379–388 (1972). https://doi.org/10.1137/0709036

    Article  MathSciNet  MATH  Google Scholar 

  33. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remigijus Paulavičius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stripinis, L., Paulavičius, R. & Žilinskas, J. Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT. Optim Lett 12, 1699–1712 (2018). https://doi.org/10.1007/s11590-017-1228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1228-4

Keywords

Navigation