Skip to main content
Log in

A tolerance function for the multiobjective set covering problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The multiobjective set covering problem (MOSCP), an NP-hard combinatorial optimization problem, has received limited attention in the literature from the perspective of approximating its Pareto set. The available algorithms for approximating the Pareto set do not provide a bound for the approximation error. In this study, a polynomial-time algorithm is proposed to approximate an element in the weak Pareto set of the MOSCP with a quality that is known. A tolerance function is defined to identify the approximation quality and is derived for the proposed algorithm. It is shown that the tolerance function depends on the characteristics of the problem and the weight vector that is used for computing the approximation. For a set of weight vectors, the algorithm approximates a subset of the weak Pareto set of the MOSCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1), 75–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angel, E., Bampis, E., Gourvés, L.: Approximating the Pareto curve with local search for the bicriteria TSP (1, 2) problem. Theor. Comput. Sci. 310(1–3), 135–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47(5), 730–743 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daskin, M.S., Stern, E.H.: A hierarchical objective set covering model for emergency medical service vehicle deployment. Transp. Sci. 15(2), 137–152 (1981)

    Article  MathSciNet  Google Scholar 

  6. Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. Int. Trans. Oper. Res. 7(1), 5–31 (2000)

    Article  MathSciNet  Google Scholar 

  7. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectr. 22(4), 425–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective Knapsack problems. Manag. Sci. 48(12), 1603–1612 (2002)

    Article  MATH  Google Scholar 

  10. Florios, K., Mavrotas, G.: Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems. Appl. Math. Comput. 237, 1–19 (2014)

    MathSciNet  MATH  Google Scholar 

  11. https://github.com/vOptSolver/vOptLib/tree/master/SCP. Accessed 30 Apr 2018

  12. Jaszkiewicz, A.: Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem. IEEE Trans. Evolut. Comput. 7(2), 133–143 (2003)

    Article  MathSciNet  Google Scholar 

  13. Jaszkiewicz, A.: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the Pareto memetic algorithm. Ann. Oper. Res. 131(1), 135–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)

    Chapter  Google Scholar 

  15. Liu, Y.-H.: A heuristic algorithm for the multi-criteria set-covering problems. Appl. Math. Lett. 6(5), 21–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lust, T., Teghem, J., Tuyttens, D.: Very large-scale neighborhood search for solving multiobjective combinatorial optimization problems. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO, pp. 254–268. Springer, Berlin (2011)

    Google Scholar 

  17. Lust, T., Tuyttens, D.: Variable and large neighborhood search to solve the multiobjective set covering problem. J. Heurist. 20(2), 165–188 (2014)

    Article  MATH  Google Scholar 

  18. McDonnell, M.D., Possingham, H.P., Ball, I.R., Cousins, E.A.: Mathematical methods for spatially cohesive reserve design. Environ. Model. Assess. 7(2), 107–114 (2002)

    Article  Google Scholar 

  19. Musliu, N.: Local search algorithm for unicost set covering problem. In: Dapoigny, R., Ali, M. (eds.) IEA/AIE, pp. 302–311. Springer, Berlin (2006)

    Google Scholar 

  20. Orlin, J.B., Ahuja, R.K., Magnanti, T.L.: Network flows: theory, algorithms, and applications. Prentice Hall, New Jersey (1993)

  21. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pp. 86–92. IEEE (2000)

  22. Prins, C., Prodhon, C., Calvo, R.W.: Two-phase method and Lagrangian relaxation to solve the bi-objective set covering problem. Ann. Oper. Res. 147(1), 23–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saxena, R.R., Arora, S.R.: Linearization approach to multi-objective quadratic set covering problem. Optimization 43(2), 145–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-Criteria Decis. Anal. 3(2), 83–104 (1994)

    Article  MATH  Google Scholar 

  25. Vanderpooten, D., Weerasena, L., Wiecek, M.M.: Covers and approximations in multiobjective optimization. J. Glob. Optim. 67(3), 601–619 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2013)

    Google Scholar 

  27. Weerasena, L., Shier, D., Tonkyn, D.: A hierarchical approach to designing compact ecological reserve systems. Environ. Model. Assess. 19(5), 437–449 (2014)

    Article  Google Scholar 

  28. Weerasena, L., Wiecek, M.M., Soylu, B.: An algorithm for approximating the Pareto set of the multiobjective set covering problem. Ann. Oper. Res. 248(1–2), 493–514 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakmali Weerasena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weerasena, L., Wiecek, M.M. A tolerance function for the multiobjective set covering problem. Optim Lett 13, 3–21 (2019). https://doi.org/10.1007/s11590-018-1267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1267-5

Keywords