Skip to main content
Log in

Improved price of anarchy for machine scheduling games with coordination mechanisms

  • Short Communication
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We study several machine scheduling games, each involving n jobs to be processed on m uniformly related machines. Each job, as an agent, selects a machine for processing to minimize his disutility (e.g., the completion time of the agent). We analyze the price of anarchy (PoA) for these scheduling games, where the PoA is defined as maximum ratio of the central objective value of the worst pure Nash equilibrium over the optimal central objective value among all problem instances. We improve several existing results in the literature. First, we give an improved upper bound of the PoA for the scheduling game studied by Hoeksma and Uetz (WAOA’11 proceedings of the 9th international conference on approximation and online algorithms, vol 9. Springer, Berlin, pp 261–273, 2011). Then, we present a better lower bound of the PoA for the scheduling game studied by Lee et al. (Eur J Oper Res 220:305–313, 2012). Finally, we provide improved upper bounds of the PoA in terms of the number of machines, for another scheduling game proposed by Chen and Gürel (J Sched 15:157–164, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Conference on Theoretical Aspects of Computer Science, pp. 404–413. Springer (1999)

  2. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410, 3327–3336 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ye, D., Zhang, G.: Coordination mechanisms for selfish parallel jobs scheduling. In: Theory and Applications of Models of Computation, pp. 225–236. Springer, Berlin (2012)

  4. Nong, Q.Q., Fan, G.Q., Fang, Q.Z.: A coordination mechanism for a scheduling game with parallel-batching machines. J. Comb. Optim. 33(2), 1–13 (2016)

    MathSciNet  Google Scholar 

  5. Chen, Q., Lin, L., Tan, Z., Yan, Y.: Coordination mechanisms for scheduling games with proportional deterioration. Eur. J. Oper. Res. 263(2), 380–389 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lee, K., Leung, Y.T., Pinedo, M.L.: Coordination mechanisms for parallel machine scheduling. Eur. J. Oper. Res. 220(2), 305–313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. Oper. Res. 60(3), 529–540 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. Algorithmica 66(3), 512–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, L., Xian, X., Yan, Y., He, X., Tan, Z.: Inefficiency of equilibria for scheduling game with machine activation costs. Theor. Comput. Sci. 607(P2), 193–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, L., Tang, G., Fan, B., Wang, X.: Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process. J. Comb. Optim. 30(4), 938–948 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xie, F., Xu, Z., Zhang, Y., Bai, Q.: Scheduling games on uniform machines with activation cost. Theor. Comput. Sci. 580, 28–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xie, F., Zhang, Y., Bai, Q., Xu, Z.: Inefficiency analysis of the scheduling game on limited identical machines with activation costs. Inf. Process. Lett. 116(4), 316–320 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 410(17), 1589–1598 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9(1), 91–103 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-Wesley Publishing Company, Boston (1967)

    MATH  Google Scholar 

  17. Hoeksma, R., Uetz, M.: The price of anarchy for minsum related machine scheduling. In: WAOA’11 Proceedings of the 9th International Conference on Approximation and Online Algorithms, vol. 9, pp. 261–273. Springer, Berlin (2011)

  18. Vöcking, B.: Selfish load balancing. Algorithmic Game Theory 20, 517–542 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Berenbrink, P., Goldberg, L.A., Goldberg, P.W., Martin, R.: Utilitarian resource assignment. J. Discrete Algorithms 4(4), 567–587 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, B., Gürel, S.: Efficiency analysis of load balancing games with and without activation costs. J. Sched. 15(2), 157–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. J. ACM 23(2), 317–327 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Yuzhong Zhang, Long Zhang and Qingguo Bai was supported in part by the National Natural Science Foundation of China under grants 11771251 and 71771138, the Natural Science Foundation of Shandong Province, China under grant ZR2017MG009, and the Key Project of Shandong Provincial Natural Science Foundation of China under grant ZR2015GZ009. The work of Donglei Du was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) Grant 283106 and National Science Foundation of China (NNSF) Grants (11771386 and 11728104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhong Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, Y., Du, D. et al. Improved price of anarchy for machine scheduling games with coordination mechanisms. Optim Lett 13, 949–959 (2019). https://doi.org/10.1007/s11590-018-1285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1285-3

Keywords