Skip to main content
Log in

Essential stability of cooperative equilibria for population games

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we first introduce the notion of cooperative equilibria for population games and prove its existence theorem by Proposition 2 in Kajii (J Econ Theory 56:194–205, 1992). We next identify a residual dense subclass of population games whose cooperative equilibria are all essential. Moreover, we show the existence of essential components of the cooperative equilibrium set by proving the connectivity of minimal essential sets of the cooperative equilibrium set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Yang, G.H., Yang, H.: Stability of weakly Pareto–Nash equilibria and Pareto–Nash equilibria for multiobjective population games. Set Valued Var. Anal. 25, 427–439 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aumann, R.J.: The core of a cooperative game without side payments. Trans. Am. Math. Soc. 98, 539–552 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Scarf, H.F.: On the existence of a cooperative solution for a general class of n-person games. J. Econ. Theory 3, 169–181 (1971)

    Article  MathSciNet  Google Scholar 

  5. Ichiishi, T.: A social coaltional equilibrium existence lemma. Econometrica 49(2), 369–377 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kajii, A.: A generalization of Scarf’s theorem: an \(\alpha \)-core existence theorem without transitivity or completeness. J. Econ. Theory 56, 194–205 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nessah, R., Tian, G.Q.: On the existence of strong Nash equilibria. J. Math. Anal. Appl. 414, 871–885 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Askoura, Y., Sbihi, M., Tikobaini, H.: The ex ante \(\alpha \)-core for normal form games with uncertainty. J. Math. Econ. 49, 157–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Askoura, Y.: An interim core for normal form games and exchange economics with incomplete information. J. Math. Econ. 58, 38–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Noguchi, M.: Cooperative equilibria of finite games with incomplete information. J. Math. Econ. 55, 4–10 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Noguchi, M.: Alpha cores of games with nonatomic asymmetric information. J. Math. Econ. 75, 1–12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Askoura, Y.: The weak-core of a game in normal form with a continuum of players. J. Math. Econ. 47, 43–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Askoura, Y.: On the core of normal form games with a continuum of players. Math. Soc. Sci. 89, 32–42 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, Z.: Some infinite-player generalizations of Scarf’s theorem: finite-coalition \(\alpha \)-cores and weak \(\alpha \)-cores. J. Math. Econ. 73, 81–85 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, Z.: Some generalizations of Kajii’s theorem to games with infinitely many players. J. Math. Econ. 76, 131–135 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, W.T., Jiang, J.H.: Essential equilibrium points of n-person noncooperative games. Sci. Sin. 11, 1307–1322 (1962)

    MATH  Google Scholar 

  17. Yu, J.: Essential equilibrium points of n-person noncooperative game. J. Math. Econ. 31, 361–372 (1999)

    Article  MATH  Google Scholar 

  18. Yu, J., Xiang, S.W.: On essential components of the set of Nash equilibrium points. Nonlinear Anal. 38, 259–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, Y.H., Yu, J., Xiang, S.W.: Essential stability in games with infinitely many pure strategies. Int. J. Game Theory 35, 493–503 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carbonell-Nicolau, O.: Essential equilibria in normal-form games. J. Econ. Theory 145, 421–431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carbonell-Nicolau, O.: Further results on essential Nash equilibria in normal-form games. Econ. Theory 59, 277–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Scalzo, V.: Essential equilibria of discontinuous games. Econ. Theory 54, 27–44 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, Y.H., Yu, J., Xiang, S.W., Wang, L.: Essential stability in games with endogenous sharing rules. J. Math. Econ. 45, 233–240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, Z., Ju, Y.: Existence and generic stability of cooperative equilibria for multi-leader-multi-follower games. J. Glob. Optim. 65, 563–573 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Z.: Essential stability of \(\alpha \)-core. Int. J. Game Theory 1, 13–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill Inc, New York (1991)

    MATH  Google Scholar 

  27. Fort Jr., M.K.: Points of continuity of semicontinuous functions. Publ. Math. Debr. 2, 100–102 (1951)

    MATH  Google Scholar 

  28. Aubin, J.P., Ekeland, K.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  29. Kinoshita, S.: On essential components of the set of fixed points. Osaka Math. J. 4, 19–22 (1952)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant Number 11501349), and Graduate Innovation Foundation sponsored by Shanghai University of Finance and Economics (Grant Number CXJJ-2018-355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, H. Essential stability of cooperative equilibria for population games. Optim Lett 13, 1573–1582 (2019). https://doi.org/10.1007/s11590-018-1303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1303-5

Keywords