Abstract
In this study, we introduce a new global optimization technique for a multi-dimensional unconstrained optimization problem. First, we present a new smoothing auxiliary function. Second, we transform the multi-dimensional problem into a one-dimensional problem by using an auxiliary function to reduce the number of local minimizers and then we find the global minimizer of the one-dimensional problem. Finally, we find the global minimizer of the multi-dimensional smooth objective function with the help of a new algorithm.

Similar content being viewed by others
References
Robertson, B.L.: Direct search methods for nonsmooth problems using global optimization techniques. PhD thesis, University of Canterbury, Christchurch, New Zealand (2010)
Bagirov, A.M., Rubinov, A.M., Zhang, J.: A multidimensional descent method for global optimization. Optimization 58, 611–625 (2009)
Wu, Z.Y., Rubinov, A.M.: Global optimality conditions for some classes of optimization problems. J. Optim. Theory App. 145, 164–185 (2010)
Wu, Z.Y., Li, G.Q., Quan, J.: Global optimality conditions and optimization methods for quadratic integer programming problems. J. Glob. Optim. 51, 549–568 (2011)
Lin, Y., Yang, Y.: A new filled function method for constrained nonlinear equations. Appl. Math. Comput. 219, 3100–3112 (2012)
Ling, B.W.K., Wu, C.Z., Teo, K.L., Rehbock, V.: Global optimal design of IIR filters via constraint transcription and filled function methods. Circ. Syst. Signal Process. 32, 1313–1334 (2013)
Locatelli, M., Maischberger, M., Schoen, F.: Differential evolution methods based on local searches. Comput. Oper. Res. 43, 169–180 (2014)
Sahiner, A., Yilmaz, N., Kapusuz, G.: A descent global optimization method based on smoothing techniques via Bezier curves. Carpath. J. Math. 33, 373–380 (2017)
Sahiner, A., Yilmaz, N., Demirozer, O.: Mathematical modeling and an application of the filled function method in entomology. Int. J. Pest Manag. 60, 232–237 (2014)
Kearfott, R.B.: Interval extensions of non-smooth functions for global optimization and nonlinear systems solvers. Computation 57, 149–162 (1996)
Wang, Y., Fan, L.: A smoothing evolutionary algorithm with circle search for global optimization. In: 4th IEEE International Conference, pp. 412–418 (2010)
Fuduli, A., Gaudioso, M., Nurminski, E.A.: A splitting bundle approach for non-smooth non-convex minimization. Optimization 64, 1131–1151 (2015)
Xu, Y., Zhang, Y., Wang, S.: A modified tunneling function method for non-smooth global optimization and its application in artificial neural network. Appl. Math. Model. 39, 6438–6450 (2015)
Zhang, Y., Zhang, L., Xu, Y.: New filled functions for nonsmooth global optimization. Appl. Math. Model. 33, 3114–3129 (2009)
Bertsekas, D.P.: Nondifferentiable optimization via approximation. Math. Program. Stud. 3, 1–25 (1975)
Zang, I.: A smoothing-out technique for min max optimization. Math. Program. 19, 61–77 (1980)
Xavier, A.E.: Hyperbolic penalty: a new method for nonlinear programming with inequalities. Int. Trans. Oper. Res. 8, 659–671 (2001)
Xavier, A.E., De Oliveira, A.A.F.: Optimal covering of plane domains by circles via hyperbolic smoothing. J. Glob. Optim. 31, 493–504 (2005)
Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization. SIM, Philadelphia (2009)
Renpu, R.G.: A filled function method for finding a global minimizer of a function of several variables. Math. Program. 46, 191–204 (1990)
Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. 134, 71–99 (2012)
Yang, Y., Pang, L., Ma, X., Shen, J.: Constrained nonconvex nonsmooth optimization via proximal bundle method. J. Optim. Theory App. 163, 900–925 (2014)
Ralph, D., Xu, H.: Implicit smoothing and its application to optimization with piecewise smooth equality constraints. J. Optim. Theory Appl. 124, 673–699 (2005)
Wu, H., Zhang, P., Lin, G.H.: Smoothing approximations for some piecewise smooth functions. J. Oper. Res. Soc. China 3, 317–329 (2015)
Yilmaz, N., Sahiner, A.: A new smoothing approximation to piecewise smooth functions and applications. Int. Conf. Anal. Appl. 226–226 (2016)
Ma, S., Yang, Y., Liu, H.: A parameter free filled function for unconstrained global optimization. Appl. Math. Comput. 215, 3610–3619 (2010)
Hedar, A.: Test functions for unconstrained global optimization. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar-files/TestGO-files/Page364.htm. Accessed 2013
Wei, F., Wang, Y., Lin, H.: A new filled function method with two parameters for global optimization. J. Optim. Theory Appl. 163, 510–527 (2014)
Ketfi-Cherif, A., Ziadi, A.: Global descent method for constrained continuous global optimization. Appl. Math. Comput. 244, 209–221 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sahiner, A., Ibrahem, S.A. A new global optimization technique by auxiliary function method in a directional search. Optim Lett 13, 309–323 (2019). https://doi.org/10.1007/s11590-018-1315-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-018-1315-1