Skip to main content
Log in

Program strategies for a dynamic game in the space of measures

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The continuity equation describes the transport of a distributed quantity along a vector field. If two independent players affect the vector field we arrive at a game with dynamics given by the continuity equation, or a game in the space of measures. For this game, we discuss a notion of program strategy, provide an existence theorem for the equilibrium, and prove a necessary equilibrium condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Crippa, G.: Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. In: Transport Equations and Multi-D Hyperbolic Conservation Laws, Lect. Notes Unione Mat. Ital., vol. 5, pp. 3–57. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. As Soulaimani, S.: Viability with probabilistic knowledge of initial condition, application to optimal control. Set-Valued Anal. 16(7–8), 1037–1060 (2008). https://doi.org/10.1007/s11228-008-0097-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-34514-5

    Book  MATH  Google Scholar 

  4. Bressan, A.: Noncooperative differential games. Milan J. Math. 79(2), 357–427 (2011). https://doi.org/10.1007/s00032-011-0163-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control, AIMS Series on Applied Mathematics, vol. 2. American Institute of Mathematical Sciences (AIMS), Springfield (2007)

    MATH  Google Scholar 

  6. Cardaliaguet, P., Jimenez, C., Quincampoix, M.: Pure and random strategies in differential game with incomplete informations. J. Dyn. Games 1(3), 363–375 (2014). https://doi.org/10.3934/jdg.2014.1.363

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardaliaguet, P., Souquière, A.: A differential game with a blind player. SIAM J. Control Optim. 50(4), 2090–2116 (2012). https://doi.org/10.1137/100808903

    Article  MathSciNet  MATH  Google Scholar 

  8. Kipka, R.J., Ledyaev, Y.S.: Extension of chronological calculus for dynamical systems on manifolds. J. Differ. Equ. 258(5), 1765–1790 (2015). https://doi.org/10.1016/j.jde.2014.11.014

    Article  MathSciNet  MATH  Google Scholar 

  9. Krasovskiĭ, N.N., Subbotin, A.I.: Pozitsionnye Differentsial\(^{\prime }\) nye Igry. Izdat. Nauka, Moscow (1974)

    Google Scholar 

  10. Marigonda, A., Quincampoix, M.: Mayer control problem with probabilistic uncertainty on initial positions. J. Differ. Equ. (2017). https://doi.org/10.1016/j.jde.2017.11.014. https://www.sciencedirect.com/science/article/pii/S0022039617306046

    Article  MathSciNet  Google Scholar 

  11. Pogodaev, N.: Optimal control of continuity equations. NoDEA Nonlinear Differ. Equ. Appl. 23(2), 24 (2016). https://doi.org/10.1007/s00030-016-0357-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Scorza Dragoni, G.: Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un’altra variabile. Rend. Sem. Mat. Univ. Padova 17, 102–106 (1948)

    MathSciNet  MATH  Google Scholar 

  13. Villani, C.: Optimal transport, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-71050-9. Old and new

    Book  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation, Grant No. 17-11-01093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Pogodaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogodaev, N. Program strategies for a dynamic game in the space of measures. Optim Lett 13, 1913–1925 (2019). https://doi.org/10.1007/s11590-018-1318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1318-y

Keywords

Navigation