Skip to main content
Log in

Algorithm of uniform filling of nonlinear dynamic system reachable set based on maximin problem solution

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper we propose an algorithm of obtaining reachable points that uniformly fill the volume of the reachable set, and thus, result in a point cloud uniformly approximating a set even with a small number of points. To solve the task of finding each additional point is to solve the maximin optimal control problem. The design of the method allows considering reachable sets not only of two-dimensional systems but of multidimensional ones as well. The computational experiments conducted with the use of the proposed algorithm confirm the efficiency of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tolstonogov, A.A.: Differential Inclusions in a Banach Space. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  2. Chernousko, F.L.: State Estimation for Dynamic Systems. CRC Press, Boca Raton (1994)

    Google Scholar 

  3. Panasyuk, A.I.: Differential equation for nonconvex attainment sets. Math. Notes Acad. Sci. USSR 37(5), 395–400 (1985)

    MATH  Google Scholar 

  4. Lotov, A.V.: On the concept of generalized sets of accessibility and their construction for linear controlled systems. In: Smyshlyaev, A. (ed.) Proceedings of Task Force Meeting in Input-Output Modelling. CP-82-32, pp. 236–238. International Institute for Applied Systems Analysis, Laxenburg (1982)

  5. Chernousko, F.L., Rokityanskii, D.Y.: Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbation. J. Optim. Theory Appl. 104(1), 1–19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kurzhanski, A.B., Valyi, I.: Ellipsoidal techniques for dynamic systems: control synthesis for uncertain systems. Dyn. Control 2(2), 87–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Krogh, B., Lynch, N. (eds.) Hybrid Systems: Computation and Control, LNCS 1790, pp. 73–88. Springer, Berlin (2000)

    Google Scholar 

  8. Kurzhanski, A.B., Varaiya, P.: On some nonstandard dynamic programming problems of control theory. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications. Kluwer, New York (2004)

    Google Scholar 

  9. Kurzhanski, A.B., Mitchell, I., Varaiya, P.: Control synthesis for state constrained systems and obstacle problems. In: Proceedings of the IFAC (NOLCOS) Symposium, pp. 657–662. Elsevier, Stuttgart (2004)

  10. Gurman, V.I.: Extension Principle for Optimal Control Problems. Nauka, Moscow (1985). (in Russian)

    MATH  Google Scholar 

  11. Dontchev, A.L., Hager, W.W.: Euler approximation of the feasible set. Numer. Funct. Anal. Optim. 15(3 & 4), 245–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ushakov, V.N., Matviichuk, A.R., Ushakov, A.V.: Approximations of attainability sets and of integral funnels of differential inclusions. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki 4, 23–29 (2011). (in Russian)

    Article  MATH  Google Scholar 

  13. Baier, R., Chahma, I.A., Lempio, F.: Stability and convergence of Euler’s method for state-constrained differential inclusions. SIAM J. Optim. 18(3), 1004–1026 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baier, R., Gerdts, M., Xausa, I.: Approximation of reachable sets using optimal control algorithms. Numer. Algebra Control Optim. 3(3), 519–548 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitchell, I., Bayen, A., Tomlin, C.J.: Validating a Hamilton–Jacobi approximation to hybrid system reachable sets. In: DiBenedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) Hybrid Systems: Computation and Control, LNCS 2034, pp. 418–431. Springer, Berlin (2001)

    Google Scholar 

  16. Tomlin, C.J., Lygeros, J., Sastry, S.: A game theoretic approach to controller design for hybrid systems. Proc. IEEE 88(7), 949–970 (2000)

    Article  Google Scholar 

  17. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tiwari, A., Khanna, G.: Series of abstraction for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) Hybrid Systems: Computation and Control, LNCS 2289, pp. 465–478. Springer, Berlin (2002)

    Google Scholar 

  19. Alur, R., Dang, T., Ivancic, F.: Reachability analysis of hybrid systems via predicate abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) Hybrid Systems: Computation and Control, LNCS 2289, pp. 35–48. Springer, Berlin (2002)

    Google Scholar 

  20. Hwang, I., Balakrishnan, H., Ghosh, R., Tomlin, C.J.: Reachability analysis of deltanotch lateral inhibition using predicate abstraction. In: Sahni, S., Prasanna, V.K., Shukla, U. (eds.) High Performance Computing-HiPC2002, LNCS 2552, pp. 715–724. Springer, Berlin (2002)

    Google Scholar 

  21. Kostousova, E.K.: On the boundedness of outer polyhedral estimates for reachable sets of linear systems. Comput. Math. Math. Phys. 48(6), 918–932 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Phillipova, T.F.: Differential equations for ellipsoidal estimates for reachable sets of a nonlinear dynamical control system. Proc. Steklov Inst. Math. 271(1), 75–84 (2010)

    Article  MathSciNet  Google Scholar 

  23. Brockett, R.W.: On the Reachable Set for Bilinear Systems. Lecture Notes in Economics and Mathematical Systems, vol. 111, pp. 54–63 (1975)

  24. Chentsov, A.G.: Relaxation of reachable sets and extension constructions. Cybern. Syst. Anal. 28(4), 554–561 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Frankowska, H.: Contingent cones to reachable sets of control systems. SIAM J. Control Optim. 27(1), 170–198 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Goncharova, E., Ovseevich, A.: Limit behavior of reachable sets of linear time-invariant systems with integral bounds on control. J. Optim. Theory Appl. 157(2), 400–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gornov, A.Yu.: On a class of algorithms for constructing internal estimates of reachable set. In: Proceedings of the International Workshop, Pereslavl-Zalessky (1998)

  28. Gornov, AYu.: Computational Technologies for Solving Optimal Control Problems. Nauka, Novosib (2009). (in Russian)

    Google Scholar 

  29. Nikol’skii, M.S.: A method of approximating an attainable set for a differential inclusion. USSR Comput. Math. Math. Phys. 28(4), 192–194 (1988)

    Article  Google Scholar 

  30. Cellina, A., Orneals, A.: Representation of the attainable set for Lipschitzian differential inclusions. Rocky Mt. J. Math. 22(1), 117–124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Donchev, A.L., Lempio, F.: Difference methods for differential inclusions: a survey. SIAM Rev. 34(2), 263–294 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kastner-Maresch, A.: Implicit Runge–Kutta methods for differential inclusions. Numer. Funct. Anal. Optim. 11(9/10), 937–958 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Komarov, V.A., Pevchikh, K.E.: A method of approximating attainability sets for differential-inclusions with a specified accuracy. USSR Comput. Math. Math. Phys. 31(1), 109–112 (1991)

    MATH  Google Scholar 

  34. Raczynski, S.: Differential inclusions in system simulation. Trans. Soc. Comput. Simul. 13(1), 47–54 (1996)

    Google Scholar 

  35. Wolenski, P.: The exponential formula for the reachable set of Lipschitz differential inclusion. SIAM J. Control Optim. 28(5), 1148–1161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization. Springer, Berlin (2008)

    MATH  Google Scholar 

  37. Charalamous, C., Bandler, J.W.: Nonlinear minimax optimization as a sequence of least pth optimization with finite values of p. Int. J. Syst. Sci. 7, 377–391 (1976)

    Article  Google Scholar 

  38. Bertsekas, D.P.: Approximation procedures based on the method of multipliers. J. Optim. Theory Appl. 23, 487–510 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kort, B.W., Bertsakas, D.P.: A new penalty function algorithm for constrained minimization. In: Proceedings of the 1972 IEEE Conferences on Decision and Control, New Orlean, Louisiana (1972)

  40. Li, X.S.: An aggregate function method for nonlinear programming. Sci. China (A) 34, 1467–1473 (1991)

    MathSciNet  MATH  Google Scholar 

  41. Patsko, V.S., Pyatko, S.G., Fedotov, A.A.: Three-dimensional reachability set for a nonlinear control system. J. Comput. Syst. Sci. Int. 42(3), 320–328 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Smirnov, A.: Attainability Analysis of the DICE Model. Interim Report IR-05-000. International Institute for Applied Systems Analysis, Laxenburg (2005)

  43. Gornov, A.Yu., Zarodnyuk, T.S., Madzhara, T.I., Daneyeva, A.V., Veyalko, I.A.: A collection of test multiextremal optimal control problems. In: Optimization, Simulation and Control, Springer Optimization and Its Applications, vol. 76, pp. 257–274 (2013)

  44. Gornov, AYu., Zarodnyuk, T.S., Finkelstein, E.A., Anikin, A.S.: The method of uniform monotonous approximation of the reachable set border for a controllable system. J. Glob. Optim. 66(1), 53–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Grant No. 15-07-03827 of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya A. Finkelstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornov, A.Y., Finkelstein, E.A. & Zarodnyuk, T.S. Algorithm of uniform filling of nonlinear dynamic system reachable set based on maximin problem solution. Optim Lett 13, 633–643 (2019). https://doi.org/10.1007/s11590-018-1368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1368-1

Keywords

Navigation