Skip to main content
Log in

Effects of feasibility cuts in Lagrangian relaxation for a two-stage stochastic facility location and network flow problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper studies a two-stage stochastic facility location and network flow problem with uncertainty in demand, supply, network availability, transportation costs, and cost of facility activation. The goal is to design a minimum cost long-term network of facilities, in anticipation of uncertain supply, demand, and network structure. Facility location decisions are made in the first stage and facility activation and network flow decisions are made in the second stage. We develop a branch and price algorithm built on a Lagrangian relaxation with two subproblems, one per stage of decision making. To improve convergence, we show that the Lagrangian subproblems could be strengthened by using Benders decomposition. Namely, we add to the first stage Lagrangian subproblem, Benders feasibility cuts generated from the second stage Lagrangian subproblem, and guarantee that the former only generates optimality cuts. Numerical results show that feasibility cuts tighten the Lagrangian duality gap in the root node of the branch and price tree, and solutions generated by our algorithm improve over the literature in terms of computational time and number of solved instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Dhaheri, N., Diabat, A.: A lagrangian relaxation-based heuristic for the multi-ship quay crane scheduling problem with ship stability constraints. Ann. Oper. Res. 248(1–2), 1–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balcik, B., Beamon, B.M.: Facility location in humanitarian relief. Int. J. Logist. 11(2), 101–121 (2008)

    Article  Google Scholar 

  3. Barbarosoglu, G., Arda, Y.: A two-stage stochastic programming framework for transportation planning in disaster response. J. Oper. Res. Soc. 55(1), 43–53 (2004)

    Article  MATH  Google Scholar 

  4. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Chang, M.-S., Tseng, Y.-L., Chen, J.-W.: A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transp. Res. Part E Logist. Transp. Rev. 43(6), 737–754 (2007)

    Article  Google Scholar 

  6. Clark, S., Watling, D.: Modelling network travel time reliability under stochastic demand. Transp. Res. Part B Methodol. 39(2), 119–140 (2005)

    Article  Google Scholar 

  7. Crainic, T.G.: Service network design in freight transportation. Eur. J. Oper. Res. 122(2), 272–288 (2000)

    Article  MATH  Google Scholar 

  8. Dell’Amico, M., Novellani, S.: A two-echelon facility location problem with stochastic demands for urban construction logistics: an application within the success project. In: 2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 90–95. IEEE (2017)

  9. El-Sayed, M., Afia, N., El-Kharbotly, A.: A stochastic model for forward-reverse logistics network design under risk. Comput. Ind. Eng. 58(3), 423–431 (2010)

    Article  Google Scholar 

  10. Elçi, Ö., Noyan, N.: A chance-constrained two-stage stochastic programming model for humanitarian relief network design. Transp. Res. Part B Methodol. 108, 55–83 (2018)

    Article  MATH  Google Scholar 

  11. Fréville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155(1), 1–21 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klose, A.: A lagrangean relax-and-cut approach for the two-stage capacitated facility location problem. Eur. J. Oper. Res. 126(2), 408–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laporte, G., Louveaux, F.V.: The integer l-shaped method for stochastic integer programs with complete recourse. Oper. Res. Lett. 13(3), 133–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Listeş, O.: A generic stochastic model for supply-and-return network design. Comput. Oper. Res. 34(2), 417–442 (2007)

    Article  MATH  Google Scholar 

  15. Liu, X., Küçükyavuz, S., Luedtke, J.: Decomposition algorithms for two-stage chance-constrained programs. Math. Program. 157(1), 219–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lium, A.-G., Crainic, T.G., Wallace, S.W.: A study of demand stochasticity in service network design. Transp. Sci. 43(2), 144–157 (2009)

    Article  Google Scholar 

  17. Manopiniwes, W., Irohara, T.: Stochastic optimisation model for integrated decisions on relief supply chains: preparedness for disaster response. Int. J. Prod. Res. 55(4), 979–996 (2017)

    Article  Google Scholar 

  18. Mete, H.O., Zabinsky, Z.B.: Stochastic optimization of medical supply location and distribution in disaster management. Int. J. Prod. Econ. 126(1), 76–84 (2010)

    Article  Google Scholar 

  19. Mitra, S., Garcia-Herreros, P., Grossmann, I.E.: A cross-decomposition scheme with integrated primal-dual multi-cuts for two-stage stochastic programming investment planning problems. Math. Program. 157(1), 95–119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moreno, A., Alem, D., Ferreira, D., Clark, A.: An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains. Eur. J. Oper. Res. 269(3), 1050–1071 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Noyan, N.: Risk-averse two-stage stochastic programming with an application to disaster management. Comput. Oper. Res. 39(3), 541–559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Noyan, N., Merakli, M., Kucukyavuz, S.: Two-stage stochastic programming under multivariate risk constraints with an application to humanitarian relief network design (2017). arXiv preprint arXiv:1701.06096

  23. Ogbe, E., Li, X.: A new cross decomposition method for stochastic mixed-integer linear programming. Eur. J. Oper. Res. 256(2), 487–499 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pacheco, M., Sharif Azadeh, S., Bierlaire, M., Gendron, B.: Integrating advanced demand models within the framework of mixed integer linear problems: a lagrangian relaxation method for the uncapacitated case. In: 17th Swiss Transport Research Conference (STRC), Number EPFL-TALK-229185 (2017)

  25. Paneque, M.P., Azadeh, S.S., Bierlaire, M., Gendron, B.: Integrating advanced demand models within the framework of mixed integer linear problems: a lagrangian relaxation method for the uncapac-itated case. In: 17th Swiss transport research conference. Transport and Mobility Laboratory (EPFL), Ascona, Switzerland (2017)

  26. Penuel, J., Smith, J.C., Yuan, Y.: An integer decomposition algorithm for solving a two-stage facility location problem with second-stage activation costs. Nav. Res. Logist. (NRL) 57(5), 391–402 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Pishvaee, M.S., Jolai, F., Razmi, J.: A stochastic optimization model for integrated forward/reverse logistics network design. J. Manuf. Syst. 28(4), 107–114 (2009)

    Article  Google Scholar 

  28. Sen, S., Higle, J.L.: The c 3 theorem and a d 2 algorithm for large scale stochastic mixed-integer programming: set convexification. Math. Program. 104(1), 1–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sen, S., Sherali, H.D.: Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming. Math. Program. 106(2), 203–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Van Roy, T.J.: Cross decomposition for mixed integer programming. Math. Program. 25(1), 46–63 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Van Roy, T.J.: A cross decomposition algorithm for capacitated facility location. Oper. Res. 34(1), 145–163 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vanderbeck, F.: Implementing mixed integer column generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 331–358. Springer, Berlin (2005)

  34. Weaver, J.R., Church, R.L.: Computational procedures for location problems on stochastic networks. Transp. Sci. 17(2), 168–180 (1983)

    Article  Google Scholar 

  35. Zeng, B., An, Y., Kuznia, L.: Chance constrained mixed integer program: bilinear and linear formulations, and benders decomposition (2014). arXiv preprint arXiv:1403.7875

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Gzara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseininasab, A., Gzara, F. Effects of feasibility cuts in Lagrangian relaxation for a two-stage stochastic facility location and network flow problem. Optim Lett 14, 171–193 (2020). https://doi.org/10.1007/s11590-019-01401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01401-4

Keywords

Navigation