Skip to main content
Log in

New single machine scheduling with nonnegative inventory constraints and discretely controllable processing times

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper investigates a new single machine scheduling problem (SMSP) featuring nonnegative inventory constraints and discretely controllable processing times. Each job contains a single category of item, and the processing of a job would release a predefined number of items into the terminal inventory of the job. A schedule is to properly specify the job and processing time in each operation for minimizing terminal inventories. An exact algorithm and a hybrid metaheuristic are established to solve the problems with different scales. Computational results indicate that the scheduling approaches are effective and efficient in solving the proposed SMSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)

    Article  Google Scholar 

  2. AktüRk, M.S., AtamtüRk, A., GüRel, S.: A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Oper. Res. Lett. 37(3), 187–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarado-Iniesta, A., Garcia-Alcaraz, J.L., Rodriguez-Borbon, M.I., Maldonado, A.: Optimization of the material flow in a manufacturing plant by use of artificial bee colony algorithm. Expert Syst. Appl. 40(12), 4785–4790 (2013)

    Article  Google Scholar 

  4. Battini, D., Boysen, N., Emde, S.: Just-in-Time supermarkets for part supply in the automobile industry. J. Manag. Control 24(2), 209–217 (2013)

    Article  Google Scholar 

  5. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)

    Article  MATH  Google Scholar 

  6. Boysen, N., Bock, S., Fliedner, M.: Scheduling of inventory releasing jobs to satisfy time-varying demand: an analysis of complexity. J. Sched. 16(2), 185–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boysen, N., Bock, S.: Scheduling just-in-time part supply for mixed-model assembly lines. Eur. J. Oper. Res. 211(1), 15–25 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boysen, N., Briskorn, D., Emde, S.: Just-in-time vehicle scheduling with capacity constraints. IIE Trans. 48(2), 134–145 (2016)

    Article  Google Scholar 

  9. Boysen, N., Emde, S., Hoeck, M., Kauderer, M.: Part logistics in the automotive industry: decision problems, literature review and research agenda. Eur. J. Oper. Res. 242(1), 107–120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z.L., Lu, Q., Tang, G.: Single machine scheduling with discretely controllable processing times. Oper. Res. Lett. 21(2), 69–76 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, W., Lee, Y.: A dynamic part-feeding system for an automotive assembly line. Comput. Ind. Eng. 43(1–2), 123–134 (2002)

    Article  Google Scholar 

  12. Christofides, N., Beasley, J.E.: A tree search algorithm for the p-median problem. Eur. J. Oper. Res. 10(2), 196–204 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daniels, R.L., Hoopes, B.J., Mazzola, J.B.: An analysis of heuristics for the parallel-machine flexible-resource scheduling problem. Ann. Oper. Res. 70, 439–472 (1997)

    Article  MATH  Google Scholar 

  14. Daniels, R.L., Hoopes, B.J., Mazzola, J.B.: Scheduling parallel manufacturing cells with resource flexibility. Manag. Sci. 42(9), 1260–1276 (1996)

    Article  MATH  Google Scholar 

  15. Daniels, R.L., Mazzola, J.B.: Flow shop scheduling with resource flexibility. Oper. Res. 42(3), 504–522 (1994)

    Article  MATH  Google Scholar 

  16. Dong, J., Zhang, L., Xiao, T.: Part supply method for mixed-model assembly lines with decentralized supermarkets. Tsinghua Sci. Technol. 21(4), 426–434 (2016)

    Article  Google Scholar 

  17. Drótos, M., Kis, T.: Scheduling of inventory releasing jobs to minimize a regular objective function of delivery times. J. Sched. 16(3), 337–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Emde, S., Fliedner, M., Boysen, N.: Optimally loading tow trains for just-in-time supply of mixed-model assembly lines. IIE Trans. 44(2), 121–135 (2012)

    Article  Google Scholar 

  19. Emde, S., Gendreau, M.: Scheduling in-house transport vehicles to feed parts to automotive assembly lines. Eur. J. Oper. Res. 260(1), 255–267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang, K.T., Lin, B.M.: Parallel-machine scheduling to minimize tardiness penalty and power cost. Comput. Ind. Eng. 64(1), 224–234 (2013)

    Article  Google Scholar 

  21. Fathi, M., Alvarez, M.J., Hassani Mehraban, F., Rodríguez, V.: A multiobjective optimization algorithm to solve the part feeding problem in mixed-model assembly lines. Math. Probl. Eng. 11(1), 809–812 (2014)

    MATH  Google Scholar 

  22. Fathi, M., Rodríguez, V., Alvarez, M.J.: A novel memetic ant colony optimization-based heuristic algorithm for solving the assembly line part feeding problem. Int. J. Adv. Manuf. Technol. 75(1–4), 629–643 (2014)

    Article  Google Scholar 

  23. Fathi, M., Rodríguez, V., Fontes, D.B., Alvarez, M.J.: A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines. Int. J. Prod. Res. 54(3), 878–893 (2016)

    Article  Google Scholar 

  24. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  25. Geem, Z.W., Kim, J.H., Loganathan, G.V.: Harmony search optimization: application to pipe network design. Int. J. Model. Simul. 22(2), 125–133 (2002)

    Article  Google Scholar 

  26. Golz, J., Gujjula, R., Günther, H.O., Rinderer, S., Ziegler, M.: Part feeding at high-variant mixed-model assembly lines. Flex. Serv. Manuf. J. 24(2), 119–141 (2012)

    Article  Google Scholar 

  27. Greistorfer, P., Rego, C.: A simple filter-and-fan approach to the facility location problem. Comput. Oper. Res. 33(9), 2590–2601 (2006)

    Article  MATH  Google Scholar 

  28. Grigoriev, A., Sviridenko, M., Uetz, M.: Machine scheduling with resource dependent processing times. Math. Program. 110(1), 209–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gupta, J.N., Krüger, K., Lauff, V., Werner, F., Sotskov, Y.N.: Heuristics for hybrid flow shops with controllable processing times and assignable due dates. Comput. Oper. Res. 29(10), 1417–1439 (2002)

    Article  MATH  Google Scholar 

  30. Grawe, S.J., Daugherty, P.J., McElroy, J.C.: External organizational commitment among organizational implants: the case of logistics service providers. Transp. Res. E Logist. 48(1), 165–177 (2012)

    Article  Google Scholar 

  31. Hsieh, P.H., Yang, S.J., Yang, D.L.: Decision support for unrelated parallel machine scheduling with discrete controllable processing times. Appl. Soft Comput. 30, 475–483 (2015)

    Article  Google Scholar 

  32. Jansen, K., Mastrolilli, M., Solis-Oba, R.: Approximation schemes for job shop scheduling problems with controllable processing times. Eur. J. Oper. Res. 167(2), 297–319 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Keshtzari, M., Naderi, B., Mehdizadeh, E.: An improved mathematical model and a hybrid metaheuristic for truck scheduling in cross-dock problems. Comput. Ind. Eng. 91, 197–204 (2016)

    Article  Google Scholar 

  34. Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter estimation of the nonlinear Muskingum model using harmony search. J. Am. Water Resour. Assoc. 37(5), 1131–1138 (2001)

    Article  Google Scholar 

  35. Lazarev, A.A., Arkhipov, D.I., Werner, F.: Scheduling jobs with equal processing times on a single machine: minimizing maximum lateness and makespan. Optim. Lett. 11(1), 165–177 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. 194(36–38), 3902–3933 (2005)

    Article  MATH  Google Scholar 

  37. Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.N., Salcedo-Sanz, S., Geem, Z.W.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intel. 26(8), 1818–1831 (2013)

    Article  Google Scholar 

  38. Pinheiro, R.G.S., Martins, I.C., Protti, F., Ochi, L.S.: A matheuristic for the cell formation problem. Optim. Lett. 12(2), 335–346 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rao, Y.Q., Wang, M.C., Wang, K.P., Wu, T.M.: Scheduling a single vehicle in the just-in-time part supply for a mixed-model assembly line. Comput. Oper. Res. 40(11), 2599–2610 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rego, C., Duarte, R.: A filter-and-fan approach to the job shop scheduling problem. Eur. J. Oper. Res. 194(3), 650–662 (2009)

    Article  MATH  Google Scholar 

  41. Zhou, B.H., Peng, T.: Scheduling the in-house logistics distribution for automotive assembly lines with just-in-time principles. Assem. Autom. 37(1), 51–63 (2017)

    Article  Google Scholar 

  42. Zhou, B.H., Xu, J.H.: A novel optimized cyclic part feeding system with line-integrated supermarkets. Proc. Inst. Mech. Eng. B J. Eng. (2018). https://doi.org/10.1177/0954405417752510

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under the Grant 71471135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghai Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Peng, T. New single machine scheduling with nonnegative inventory constraints and discretely controllable processing times. Optim Lett 13, 1111–1142 (2019). https://doi.org/10.1007/s11590-019-01407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01407-y

Keywords