Skip to main content
Log in

On the metric dimension of the folded n-cube

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A subset S of vertices in a graph G is called a resolving set for G if for arbitrary two distinct vertices \(u, v\in V\), there exists a vertex x from S such that the distances \(d(u, x)\ne d(v, x)\). The metric dimension of G is the minimum cardinality of a resolving set of G. A minimal resolving set is a resolving set which has no proper subsets that are resolving sets. Let \(\Box _{n}\) denote the folded n-cube. In this paper, we consider the metric dimension of \(\Box _{n}\). By constructing explicitly minimal resolving sets for \(\Box _{n}\), we obtain upper bounds on the metric dimension of this graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babai, L.: On the complexity of canonical labeling of strongly regular graphs. SIAM J. Comput. 9, 212–216 (1980)

    Article  MathSciNet  Google Scholar 

  2. Babai, L.: On the order of uniprimitive permutation groups. Ann. Math. 113, 553–568 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bailey, R.F., Cameron, P.J.: Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43, 209–242 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bailey, R.F., Meagher, K.: On the metric dimension of Grassmann graphs. Discrete Math. Theor. Comput. Sci. 13(4), 97–104 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Bailey, R.F., Cáceres, J., Garijo, D., González, A., Márquez, A., Meagher, K., Puertas, M.L.: Resolving sets for Johnson and Kneser graphs. Eur. J. Combin. 34(4), 736–751 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bailey, R.F.: The metric dimension of small distance-regular and strongly regular graphs. Australas. J. Combin. 62, 18–34 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Clarendon Press, Oxford (1953)

    MATH  Google Scholar 

  8. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)

    Book  Google Scholar 

  9. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105(1), 99–113 (2000)

    Article  MathSciNet  Google Scholar 

  10. Chvátal, V.: Mastermind. Combinatorica 3, 325–329 (1983)

    Article  MathSciNet  Google Scholar 

  11. El-Amawy, A., Latifi, S.: Properties and performance of folded hypercubes. IEEE Trans. Parallel Distrib. Syst. 2(3), 31–42 (1991)

    Article  Google Scholar 

  12. Feng, M., Wang, K.S.: On the metric dimension of bilinear forms graphs. Discrete Math. 312(6), 1266–1268 (2012)

    Article  MathSciNet  Google Scholar 

  13. Ganesan, A.: Minimal resolving sets for the hypercube (2012). arXiv:1106.3632v3

  14. Guo, J., Wang, K.S., Li, F.G.: Metric dimension of some distance-regular graphs. J. Comb. Optim. 26(1), 190–197 (2013)

    Article  MathSciNet  Google Scholar 

  15. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  16. Hertz, A.: An IP-based swapping algorithm for the metric dimension and minimal doubly resolving set problems in hypercubes. Optim. Lett. (2017). https://doi.org/10.1007/s11590-017-1184-z

    Article  Google Scholar 

  17. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70(3), 217–229 (1996)

    Article  MathSciNet  Google Scholar 

  18. Lindström, B.: On a combinatory detection problem. I. Magyar Tud. Akad. Mat. Kutató Int. Közl. 9, 195–207 (1964)

    MathSciNet  MATH  Google Scholar 

  19. Nikolic, N., C̆angalović, M., Grujic̆ić, I.: Symmetry properties of resolving sets and metric bases in hypercubes. Optim. Lett. 11(6), 1057–1067 (2017)

    Article  MathSciNet  Google Scholar 

  20. Sebő, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  Google Scholar 

  21. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for a careful reading of the paper and for many constructive comments. This research is supported by the NSF of China (Nos. 11471097 and 11971146), the NSF of Hebei Province (Nos. A2017403010 and A2019205089) and Overseas Expertise Introduction Program of Hebei Auspices (25305008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suogang Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hou, L., Hou, B. et al. On the metric dimension of the folded n-cube. Optim Lett 14, 249–257 (2020). https://doi.org/10.1007/s11590-019-01476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01476-z

Keywords

Navigation