Skip to main content

Variable neighborhood search-based solution methods for the pollution location-inventory-routing problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This work presents efficient solution approaches for a new complex NP-hard combinatorial optimization problem, the Pollution Location Inventory Routing problem (PLIRP), which considers both economic and environmental issues. A mixed-integer linear programming model is proposed and first, small problem instances are solved using the CPLEX solver. Due to its computational complexity, General Variable Neighborhood Search-based metaheuristic algorithms are developed for the solution of medium and large instances. The proposed approaches are tested on 30 new randomly generated PLIRP instances. Parameter estimation has been performed for determining the most suitable perturbation strength. An extended numerical analysis illustrates the effectiveness and efficiency of the underlying methods, leading to high-quality solutions with limited computational effort. Furthermore, the impact of holding cost variations to the total cost is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adenso-Diaz, B., Lozano, S., Moreno, P.: How the environmental impact affects the design of logistics networks based on cost minimization. Transp. Res. Part D 48, 214–224 (2016)

    Article  Google Scholar 

  2. Alfares, H., Ghaithan, A.: Inventory and pricing model with price-dependent demand, time-varying holding cost, and quantity discounts. Comput. Ind. Eng. 94, 170–177 (2016)

    Article  Google Scholar 

  3. Barth, M., Younglove, T., Scora, G.: Development of a heavy-duty diesel modal emissions and fuel consumption model. In: Technical Report. UC Berkeley: California Partners for Advanced Transit and Highways, San Francisco (2005)

  4. Bektas, T., Laporte, G.: The pollution-routing problem. Transp. Res. Part B 45, 1232–1250 (2011)

    Article  Google Scholar 

  5. Brooke, A., Kendrik, D., Meeraus, A., Raman, R., Rosenthal, R.: GAMS-A user’s guide (1998)

  6. Cheng, C., Qi, M., Wang, X., Zhang, Y.: Multi-period inventory routing problem under carbon emission regulations. Int. J. Hybrid Inf. Technol. 182, 263–275 (2016)

    Google Scholar 

  7. Cheng, C., Yang, P., Qi, M., Rousseau, L.: Modeling a green inventory routing problem with a heterogeneous fleet. Transp. Res. Part E 97, 97–112 (2017)

    Article  Google Scholar 

  8. Demir, E., Bektas, T., Laporte, G.: A review of recent research on green road freight transportation. Eur. J. Oper. Res. 237, 775–793 (2014)

    Article  Google Scholar 

  9. Derbel, H., Jarboui, B., Bhiri, R.: A skewed general variable neighborhood search algorithm with fixed threshold for the heterogeneous fleet vehicle routing problem. Ann. Oper. Res. 272, 243–272 (2019)

    Article  MathSciNet  Google Scholar 

  10. Duarte, A., Mladenovic, N., Sanchez-Oro, J., Todosijevic, R.: Variable neighborhood descent. In: Martí, R., Pardalos, P.M., Resende, M.G. (eds.) Handbook of Heuristics. Springer, Cham (2016)

    Google Scholar 

  11. Dukkanci, O., Kara, B.Y., Tolga, B.: The green location-routing problem. Comput. Oper. Res. 105, 187–202 (2019)

    Article  MathSciNet  Google Scholar 

  12. Frifita, S., Mathlouthi, I., Masmoudi, M., Dammak, A.: Variable neighborhood search based algorithms to solve a rich k-travelling repairmen problem. Optim. Lett. (2020)

  13. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asymmetric TSP. Eur. J. Oper. Res. 129, 555–568 (2001)

    Article  MathSciNet  Google Scholar 

  14. Hansen, P., Mladenovic, N., Brimberg, J., Moreno-Perez, J.: Variable neighborhood search. In: Gendreau M., Potvin J.-Y. (eds) Handbook of Metaheuristics. International Series in Operations Research and Management Science (2019)

  15. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5, 423–454 (2017)

    Article  MathSciNet  Google Scholar 

  16. Herran, A., Manuel Colmenar, J., Duarte, A.: A variable neighborhood search approach for the Hamiltonian p-median problem. Appl. Soft Comput. 80, 603–616 (2019)

    Article  Google Scholar 

  17. Hu, W., Toriello, A., Dessouky, M.: Integrated inventory routing and freight consolidation for perishable goods. Eur. J. Oper. Res. 271, 548–560 (2018)

    Article  MathSciNet  Google Scholar 

  18. Jabir, E., Panicker, V., Sridharan, R.: Design and development of a hybrid ant colony-variable neighbourhood search algorithm for a multi-depot green vehicle routing problem. Transp. Res. Part D 57, 422–457 (2017)

    Article  Google Scholar 

  19. Jarboui, B., Derbel, H., Hanafi, S., N., M., : Variable neighborhood search for location routing. Comput. Oper. Res. 40, 47–57 (2013)

  20. Javid, A., Azad, N.: Incorporating location, routing and inventory decisions in supply chain network design. Transp. Res. Part E 46, 582–597 (2010)

    Article  Google Scholar 

  21. Karakostas, P., Panoskaltsis, N., Mantalaris, A., Georgiadis, M.: Optimization of CAR T-cell therapies Supply Chains. Comput. Chem. Eng. 139 (2020a)

  22. Karakostas, P., Sifaleras, A., Georgiadis, C.: Basic VNS algorithms for solving the pollution location inventory routing problem. In: Variable Neighborhood Search (ICVNS 2018), volume 11328 of LNCS, pp. 64–76. Springer, Cham (2019a)

  23. Karakostas, P., Sifaleras, A., Georgiadis, C.: A general variable neighborhood search-based solution approach for the location-inventory-routing problem with distribution outsourcing. Comput. Chem. Eng. 126, 263–279 (2019b)

    Article  Google Scholar 

  24. Karakostas, P., Sifaleras, A., Georgiadis, M.: Adaptive variable neighborhood search solution methods for the fleet size and mix pollution location-inventory-routing problem. Expert Syst. Appl. 153 (2020b)

  25. Koc, C., Bektas, T., Jabali, O., Laporte, G.: The fleet size and mix pollution-routing problem. Transp. Res. Part B 70, 239–254 (2014)

    Article  Google Scholar 

  26. Koc, C., Bektas, T., Jabali, O., Laporte, G.: The impact of depot location, fleet composition and routing on emissions in city logistics. Transp. Res. Part B 84, 81–102 (2016)

    Article  Google Scholar 

  27. Leenders, B., Velazquez-Martinez, J., Fransoo, J.: Emissions allocation in transportation routes. Transp. Res. Part D 57, 39–51 (2017)

    Article  Google Scholar 

  28. Mjirda, A., Jarboui, B., Macedo, R., Hanafi, S., N., M., : A two phase variable neighborhood search for the multi-product inventory routing problem. Comput. Oper. Res. 52, 291–299 (2014)

  29. Poonthalir, G., Nadarajan, R.: A fuel efficient green vehicle routing problem with varying speed constraint (F-GVRP). Expert Syst. Appl. 100, 131–144 (2018)

    Article  Google Scholar 

  30. Rayat, F., Musavi, M., Bozorgi-Amiri, A.: Bi-objective reliable location-inventory-routing problem with partial backordering under disruption risks: a modified AMOSA approach. Appl. Soft Comput. 59, 622–643 (2017)

    Article  Google Scholar 

  31. Reichert, A., Holtz-Rau, C., Scheiner, J.: GHG emissions in daily travel and long-distance travel in Germany—social and spatial correlates. Transp. Res. Part D 49, 25–43 (2016)

    Article  Google Scholar 

  32. Skouri, K., Sifaleras, A., Konstantaras, I.: Open problems in green supply chain modeling and optimization with carbon emission targets. In: Pardalos, P.M., Migdalas, A. (eds.) Open Problems in Optimization and Data Analysis, pp. 83–90. Springer, Berlin (2018)

    Chapter  Google Scholar 

  33. Smiti, N., Dhiaf, M., Jarboui, B., Hanafi, S.: Skewed general variable neighborhood search for the cumulative capacitated vehicle routing problem. Int. Trans. Oper. Res. 27, 651–664 (2020)

    Article  MathSciNet  Google Scholar 

  34. Sánchez-Oro, J., Sevaux, M., Rossi, A., Marti, R., Duarte, A.: Improving the performance of embedded systems with variable neighborhood search. Appl. Soft Comput. 53, 217–226 (2017)

    Article  Google Scholar 

  35. Tolga, B., J.F., E., Psaraftis, H., and Puchinger, J., : The role of operational research in green freight transportation. Eur. J. Oper. Res. 274, 807–823 (2019)

  36. Toro, M., Franco, F., Echeverri, M., Guimaraes, F.: A multi-objective model for the green capacitated location-routing problem considering environmental impact. Comput. Ind. Eng. 110, 114–125 (2017)

    Article  Google Scholar 

  37. Zachariadis, E., Tarantilis, C., Kiranoudis, C.: An integrated local search method for inventory and routing decisions. Expert Syst. Appl. 36, 10239–10248 (2009)

    Article  Google Scholar 

  38. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., Mohammadi, M.: Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transp. Res. Part E 89, 182–214 (2016)

    Article  Google Scholar 

  39. Zhang, Y., Qi, M., Miao, L., Liu, E.: Hybrid metaheuristics solutions to inventory location routing problem. Transp. Res. Part E 70, 305–323 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Georgiadis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakostas, P., Sifaleras, A. & Georgiadis, M.C. Variable neighborhood search-based solution methods for the pollution location-inventory-routing problem. Optim Lett 16, 211–235 (2022). https://doi.org/10.1007/s11590-020-01630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01630-y

Keywords