Skip to main content
Log in

Linear and conic reformulations for the maximum capture location problem under multinomial logit choice

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper presents three reformulations for the well-known maximum capture location problem under multinomial logit choice. The problem can be cast as an integer fractional program and it has been the subject of several linear reformulations in the past. Here we develop two linear and a conic reformulation based on alternative treatments of fractional programs. Numerical experiments conducted on established sets of instances have shown that conic reformulation has greatly improved the solution times as well as the size of the solvable problems as compared to the most successful reformulations to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aboolian, R., Berman, O., Krass, D.: Competitive facility location model with concave demand. Eur. J. Oper. Res. 181(2), 598–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achabal, D., Gore, W., Mahajan, V.: Multilocl: a multiple store location decision model. J. Retail. 58(3), 5–25 (1982)

    Google Scholar 

  3. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aros-Vera, F., Marianov, V., Mitchell, J.E.: p-hub approach for the optimal park-and-ride facility location problem. Eur. J. Oper. Res. 226(2), 277–285 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arrondo, A., Fernández, J., Redondo, J.L., Ortigosa, P.M.: An approach for solving competitive location problems with variable demand using multicore systems. Optim. Lett. 8(2), 555–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ashtiani, M.: Competitive location: a state-of-art review. Int. J. Ind. Eng. Comput. 7(1), 1–18 (2016)

    Google Scholar 

  7. Atamtürk, A., Berenguer, G., Shen, Z.J.: A conic integer programming approach to stochastic joint location-inventory problems. Oper. Res. 60(2), 366–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Math. Program. 126(2), 351–363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benati, S.: The maximum capture problem with heterogeneous customers. Comput. Oper. Res. 26(14), 1351–1367 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benati, S.: An improved branch & bound method for the uncapacitated competitive location problem. Ann. Oper. Res. 122(1–4), 43–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benati, S., Hansen, P.: The maximum capture problem with random utilities: problem formulation and algorithms. Eur. J. Oper. Res. 143(3), 518–530 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benson, H.Y., Sağlam, Ü.: Mixed-integer second-order cone programming: a survey. In: Theory Driven by Influential Applications, pp. 13–36. INFORMS (2013)

  13. Benson, H.Y., Sağlam, Ü.: Smoothing and regularization for mixed-integer second-order cone programming with applications in portfolio optimization. In: Modeling and Optimization: Theory and Applications, pp. 87–111. Springer (2013)

  14. Berman, O., Krass, D.: 11 facility location problems with stochastic demands and congestion. Facil. Locat. Appl. Theory 329, 329–369 (2001)

    MATH  Google Scholar 

  15. Biscaia, R., Mota, I.: Models of spatial competition: a critical review. Pap. Reg. Sci. 92(4), 851–871 (2013)

    Article  Google Scholar 

  16. Brandenberg, R., Roth, L.: New algorithms for k-center and extensions. J. Combin. Optim. 18(4), 376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bront, J.J.M., Méndez-Díaz, I., Vulcano, G.: A column generation algorithm for choice-based network revenue management. Oper. Res. 57(3), 769–784 (2009)

    Article  MATH  Google Scholar 

  18. Cezik, M.T., Iyengar, G.: Cuts for mixed 0–1 conic programming. Math. Program. 104(1), 179–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, Y., Drewes, S., Philipp, A., Pesavento, M.: Joint network optimization and beamforming for coordinated multi-point transmission using mixed integer programming. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3217–3220. IEEE (2012)

  20. Dasci, A.: Conditional location problems on networks and in the plane. In: Foundations of Lcation Analysis, pp. 179–206. Springer (2011)

  21. De Palma, A., Ginsburgh, V., Labbé, M., Thisse, J.F.: Competitive location with random utilities. Transp. Sci. 23(4), 244–252 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. De Palma, A., Liu, Q., Thisse, J.F.: Optimal locations on a line with random utilities. Transp. Sci. 28(1), 63–69 (1994)

    Article  MATH  Google Scholar 

  23. Drezner, T.: A review of competitive facility location in the plane. Log. Res. 7(1), 114 (2014)

    Article  Google Scholar 

  24. Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12(4), 485–493 (1982)

    Article  Google Scholar 

  25. Du, Y., Chen, Q., Quan, X., Long, L., Fung, R.Y.: Berth allocation considering fuel consumption and vessel emissions. Transp. Res. Part E Log. Transp. Rev. 47(6), 1021–1037 (2011)

    Article  Google Scholar 

  26. Eiselt, H.A., Laporte, G.: The maximum capture problem in a weighted network. J. Reg. Sci. 29(3), 433–439 (1989)

    Article  Google Scholar 

  27. Freire, A.S., Moreno, E., Yushimito, W.F.: A branch-and-bound algorithm for the maximum capture problem with random utilities. Eur. J. Oper. Res. 252(1), 204–212 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gabszewicz, J.J., Thisse, J.F.: Spatial Competition and the Location of Firms, vol. 5. Harwood Academic Publishers, Chur (1986)

    Google Scholar 

  29. Ghosh, A., Craig, C.S.: Formulating retail location strategy in a changing environment. J. Mark. 47(3), 56–68 (1983)

    Article  Google Scholar 

  30. Ghosh, A., MacLafferty, S.L.: Location Strategies for Retail and Service Firms. Lexington Books, Lanham (1987)

    Google Scholar 

  31. Gu, F., Zhang, M., Hou, W., Gao, J.: Distribution optimization of the specialized car repair store based on the maximization of market share. Adv. Mech. Eng. 9(9), 1687814017731225 (2017)

    Article  Google Scholar 

  32. Haase, K., Müller, S.: A comparison of linear reformulations for multinomial logit choice probabilities in facility location models. Eur. J. Oper. Res. 232(3), 689–691 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hakimi, S.L.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12(1), 29–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hasse, K.: Discrete location planning. Institute of Transport and Logistics Studies, The University of Sydney, Tech. rep. (2009)

  35. Hijazi, H., Bonami, P., Ouorou, A.: Robust delay-constrained routing in telecommunications. Ann. Oper. Res. 206(1), 163–181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hotelling, H.: Stability in competition. Econ. J. 39, 41–57 (1929)

    Article  Google Scholar 

  37. Hua, G., Cheng, T., Wang, S.: The maximum capture per unit cost location problem. Int. J. Prod. Econ. 131(2), 568–574 (2011)

    Article  Google Scholar 

  38. Huff, D.: Determination of intra-urban retail trade areas. publication of Retail Estate Research Program (1962)

  39. Karakitsiou, A.: Modeling Discrete Competitive Facility Location. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  40. Karakitsiou, A., Migdalas, A.: Locating facilities in a competitive environment. Optim. Lett. 11(5), 929–945 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Karkazis, J.: Facilities location in a competitive environment: a promethee based multiple criteria analysis. Eur. J. Oper. Res. 42(3), 294–304 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kress, D., Pesch, E.: Sequential competitive location on networks. Eur. J. Oper. Res. 217(3), 483–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kress, D., Pesch, E.: Competitive location and pricing on networks with random utilities. Netw. Spat. Econ. 16(3), 837–863 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Küçükaydın, H., Aras, N., Altınel, İ.K.: A discrete competitive facility location model with variable attractiveness. J. Oper. Res. Soc. 62(9), 1726–1741 (2011)

    Article  MATH  Google Scholar 

  45. Kung, L.C., Liao, W.H.: An approximation algorithm for a competitive facility location problem with network effects. Eur. J. Oper. Res. 267(1), 176–186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lancaster, K.: The economics of product variety: a survey. Mark. Sci. 9(3), 189–206 (1990)

    Article  Google Scholar 

  47. Lee, G., O’Kelly, M.E.: Competitive location modeling with a rank proportional allocation. Environ. Plan. 38(3), 411–428 (2011)

    Article  Google Scholar 

  48. Ljubić, I., Moreno, E.: Outer approximation and submodular cuts for maximum capture facility location problems with random utilities. Eur. J. Oper. Res. 266(1), 46–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lobo, M.S., Fazel, M., Boyd, S.: Portfolio optimization with linear and fixed transaction costs. Ann. Oper. Res. 152(1), 341–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mai, T., Lodi, A.: Solving large-scale competitive facility location under random utility maximization models. Tech. rep., Working Paper DS4DM-2017-007, Polytechnique Montréal (July 2017) (2017)

  52. Mak, H.Y., Rong, Y., Shen, Z.J.M.: Infrastructure planning for electric vehicles with battery swapping. Manag. Sci. 59(7), 1557–1575 (2013)

    Article  Google Scholar 

  53. Marianov, V., Ríos, M., Icaza, M.J.: Facility location for market capture when users rank facilities by shorter travel and waiting times. Eur. J. Oper. Res. 191(1), 32–44 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Marianov, V., Serra, D.: Probabilistic, maximal covering location-allocation models forcongested systems. J. Reg. Sci. 38(3), 401–424 (1998)

    Article  Google Scholar 

  55. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I: convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  MATH  Google Scholar 

  56. Méndez-Díaz, I., Miranda-Bront, J.J., Vulcano, G., Zabala, P.: A branch-and-cut algorithm for the latent-class logit assortment problem. Discrete Appl. Math. 164, 246–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Nakanishi, M., Cooper, L.G.: Parameter estimation for a multiplicative competitive interaction model-least squares approach. J. Mark. Res. 11(3), 303–311 (1974)

    Google Scholar 

  58. Ndiaye, M.: Customer behaviour modelling in the maximum capture model. In: 2009 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 2285–2289. IEEE (2009)

  59. Pacheco, M., Sharif Azadeh, S., Bierlaire, M., Gendron, B.: Integrating advanced discrete choice models in mixed integer linear optimization. Tech. rep, Ecole Polytechnique Federale de Lausanne (EPFL) (2017)

  60. Pınar, M.Ç.: Mixed-integer second-order cone programming for lower hedging of american contingent claims in incomplete markets. Optim. Lett. 7(1), 63–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. ReVelle, C.: The maximum capture or sphere of influence location problem: hotelling revisited on a network. J. Reg. Sci. 26(2), 343–358 (1986)

    Article  Google Scholar 

  62. Şen, A., Atamtürk, A., Kaminsky, P.: A conic integer optimization approach to the constrained assortment problem under the mixed multinomial logit model. Oper. Res. 66(4), 994–1003 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Serra, D., Colomé, R.: Consumer choice and optimal locations models: formulations and heuristics. Pap. Reg. Sci. 80(4), 439–464 (2001)

    Article  Google Scholar 

  64. Serra, D., ReVelle, C., Rosing, K.: Surviving in a competitive spatial market: the threshold capture model. J. Reg. Sci. 39(4), 637–650 (1999)

    Article  Google Scholar 

  65. Shaikh, A., Salhi, S., Ndiaye, M.: New maxcap related problems: formulation and model solutions. Comput. Ind. Eng. 85, 248–259 (2015)

    Article  Google Scholar 

  66. Silva, F., Serra, D.: Incorporating waiting time in competitive location models. Netw. Spat. Econ. 7(1), 63–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. Stole, L.: Price discrimination and imperfect competition. Handb. Ind. Organ. 3, 34–47 (2003)

    MathSciNet  Google Scholar 

  68. Taylor, J.A., Hover, F.S.: Convex models of distribution system reconfiguration. IEEE Trans. Power Syst. 27(3), 1407–1413 (2012)

    Article  Google Scholar 

  69. Zambrano-Rey, G., López-Ospina, H., Pérez, J.: Retail store location and pricing within a competitive environment using constrained multinomial logit. Appl. Math. Modell. 75, 521–534 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang, Y.: Designing a retail store network with strategic pricing in a competitive environment. Int. J. Prod. Econ. 159, 265–273 (2015)

    Article  Google Scholar 

  71. Zhang, Y., Berman, O., Verter, V.: The impact of client choice on preventive healthcare facility network design. OR Spectrum 34(2), 349–370 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to Knut Haase, Sven Muller, Ivana Ljubic, and Eduardo Moreno for sharing their data sets with us. The data sets analysed in this study are available from the corresponding author on reasonable request. We also greatly appreciate the invaluable comments of two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Karatas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altekin, F.T., Dasci, A. & Karatas, M. Linear and conic reformulations for the maximum capture location problem under multinomial logit choice. Optim Lett 15, 2611–2637 (2021). https://doi.org/10.1007/s11590-020-01684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01684-y

Keywords

Navigation