Skip to main content
Log in

A dual scheme for solving linear countable semi-infinite fractional programming problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Using a dual method for solving linear fractional programming problems, we propose an approach to find optimal solutions of linear countable semi-infinite fractional programming problems via optimizing sequences. Duality theorems are established. A dual scheme for solving linear countable semi-infinite fractional problems is proposed. Examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E.J., Nash, P.: Linear Programming in Infinite Dimensional Spaces. Wiley, Great Britain, England (1987)

    MATH  Google Scholar 

  2. Asham, H., Kahn, A.: A complete algorithm for linear fractional programming. Comput. Math. Appl. 20(7), 11–23 (1990)

    Article  MathSciNet  Google Scholar 

  3. Bazalinov, E.B.: Linear Fractional Programming: Theory. Methods. Applications and Software. Springer-Science+Business Media, B. V. (2003)

  4. Chadha, S.S., Chadha, V.: Linear fractional programming and duality. Cent. Eur. J. Oper. Res. 15(2), 119–125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Nav. Res. Log. Q. 9(3–4), 181–186 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooke, R.G.: Infinite Matrices and Sequence Spaces. Macmilan and Co. Limited, London (1950)

    MATH  Google Scholar 

  7. Crouzeix, J., Ferland, J.A., Schaible, S.: Duality in generalized linear fractional programming. Math. Program. 27, 342–354 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dinkelbach, W.: Die maximierung eines quotienten zweier linearer funktionen unter linearen nebenbedingungen. Probab. Theory Relat. Fields 1(2), 141–145 (1962)

    MathSciNet  MATH  Google Scholar 

  9. Gabriel, J.R., López-Martínez, R.R., Lerma, O.H.: The lagrange approach to infinite linear programs. Sociedad de Estadistica e Investigacidn Operativa 9(2), 293–314 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Ghate, A.: Robust optimization in countably infinite linear programs. Optim. Lett. 10, 847–863 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghate, A., Smith, R.L.: Characterizing extreme points as basic feasible solutions in infinite linear programs. Oper. Res. Lett. 37, 7–10 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goberna, M.A., Lopez, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester, England (1998)

    MATH  Google Scholar 

  13. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, H.: One phrase algorithm for semi-infinite linear programming. Math. Program. 46, 85–103 (1990)

    Article  MATH  Google Scholar 

  15. Kornbluth, J.S.H., Stuer, R.E.: Multiple objective linear fractional programming. Manag. Sci. 27(9), 1024–1039 (1981)

    Article  MATH  Google Scholar 

  16. Nayak, S., Ojha, A.K.: Solution approach to multi-objective linear fractional programming problem using parametric functions. Opsearch 56, 174–190 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Panday, P., Punnen, A.P.: A simple algorithm for piecewise-linear fractional programming problems. Eur. J. Oper. Res. 178, 343–358 (2007)

    Article  Google Scholar 

  18. Seshan, C.R.: On duality in linear fractional programming. Proc. Indian Acad. Sci. Math. Sci. 89, 35–42 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sharkey, T.C.: Infinite Linear Programs. Wiley Encyclopedia of Operations Research and Management Science. Wiley, In book (2011)

  20. Sharma, I.C., Swarup, K.: On duality in linear fractional functionals programming. Math. Methods Oper. Res. 16(3), 92–100 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shivakumar, P.N., Sivakumar, K.C., Zhang, Y.: Infinite Matrices and Their Recent Applications. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  22. Singh, S., Haldar, N.: A new method to solve bilevel quadractic linear fractional programming problems. Int. Game Theory Rev. 17(2), 1540017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sivakumar, K.C., Swarna, J.M.: Explicit solvability of dual pairs of infinite linear programs. Opsearch 42(3), 288–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Son, T.Q.: On a duality scheme in linear fractional programming. Nonlinear Anal. Forum 11(2), 137–145 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Son, T.Q., Khoa, H.: A note on dual scheme of a linear fractional programming problem. J. Nonlinear Anal. Optim. 8, 1–6 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Stancu-Minasian, I.M.: Fractional Programming. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  27. Stancu-Minasian, I.M.: A ninth bibliography of fractional programming. Optimization 68(11), 2125–2169 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Swarup, K.: Linear fractional functions programming. Oper. Res. 13(6), 1029–1036 (1965)

    Article  MATH  Google Scholar 

  29. Tantawy, F.S.: A new method for solving linear fractional programming problems. Aust. J. Basic Appl. Sci. 1(2), 105–108 (2007)

    Google Scholar 

  30. Tantawy, F.S.: A new procedure for solving linear fractional programming problems. Math. Comput. Model. 48, 969–973 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Verma, R.U.: Semi-Infinite Fractional Programming. Springer, Singapore (2017)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to one of the anonymous referees for his valuable suggestions and remarks which helped us to improve the quality of the paper. The first author was supported partially by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2020.09. The second author was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2019R1A2C1008672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Sang Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this part, we mention some duality theorems for linear fractional programming problems introduced in [18, 26] and refined in [24]. For convenience, the theorems are restated for \(\mathrm{(P_k)}\) and \(\mathrm{(D_k)}\) without proofs except Theorem A.2.

Theorem A.1

(Weak duality) One has

$$\begin{aligned} \sup \{F(x) \mid x \in X_k \} \le \inf \{I(u,v) \mid (u,v) \in Y_k\}. \end{aligned}$$

Theorem A.2

(Strong duality) If \(\bar{x}_k\) is an optimal solution of \(\mathrm{(P_k)}\) then there exists an optimal solution \((\bar{u}_k,\bar{v}_k)\) of \(\mathrm{({D}_k)}\) and

$$\begin{aligned} F(\bar{x}_k)=I(\bar{u}_k,\bar{v}_k). \end{aligned}$$
(15)

Proof

Let \(\bar{x}_k\) be an optimal solution of \(\mathrm{(P_k)}\). By Dinkelbach transformation and by setting \(\displaystyle {\bar{\lambda }=\frac{c^T\bar{x}_k+c_0}{d^T\bar{x}_k+d_0}}\), we have the following linear problem:

$$\begin{aligned} \mathrm{(LP_k)} \quad \mathrm{Max} \{c^Tx+c_0-\bar{\lambda }(d^Tx+d_0) \mid \mathcal {A}^{(k)}x \le b^{(k)}, x \in \mathbb {R}^n_+ \}. \end{aligned}$$

It is easy to verify that \(\bar{x}_k\) is also an optimal solution of \(\mathrm{(LP_k)}\) and its optimal value is 0, (see [3, Theorem 3.2]). According to dual scheme in linear programming, we obtain the dual problem of \(\mathrm{(LP_k)}\):

$$\begin{aligned} \mathrm{(LD_k)} \quad \mathrm{Min} \{(b^{k})^Tv+c_0-\bar{\lambda }d_0 \mid (\mathcal {A}^{(k)})^Tv \ge c -\bar{\lambda }d, v \ge 0, v \in \mathbb {R}^k \}. \end{aligned}$$

Note that the optimal value of \(\mathrm{(LD_k)}\) is 0 and \(\mathrm{(LD_k)}\) must have an optimal solution \(\bar{v}^*\ge 0\). Hence,

$$\begin{aligned} (b^{k})^T\bar{v}^*+c_0-\bar{\lambda }d_0 =0. \end{aligned}$$
(16)

Choose \(\bar{u}_k= \bar{x}_k\) and \(\bar{v}_k=(d^T\bar{x}_k+d_0) \bar{v}^*\). We claim that \((\bar{u}_k,\bar{v}_k)\) is an optimal solution of \(\mathrm{(D_k)}.\) Obviously, the conditions (6) and (7) hold for \({\bar{u}}_k\) and \({\bar{v}}_k\). We need to verify (4) and (5). Since

$$\begin{aligned} \begin{array}{lll} (d^T\bar{u}_k)c-(c^T\bar{u}_k)d-{\mathcal {A}^{(k)}}^T\bar{v}_k&{}=&{}(d^T\bar{u}_k)c-(c^T\bar{u}_k)d-{\mathcal {A}^{(k)}}^T(d^T\bar{x}_k+d_0) \bar{v}^*\\ {} &{}\le &{}(d^T\bar{x}_k)c-(c^T\bar{x}_k)d-(c-\bar{\lambda }d)(d^T\bar{x}_k+d_0)\\ &{}=&{}(d^T\bar{x}_k)c-(c^T\bar{x}_k)d-(d^T\bar{x}_k+d_0)c-(c^T\bar{x}_k+c_0)d\\ &{}=&{}c_0d-d_0c, \end{array} \end{aligned}$$

the condition (4) holds. Next we verify (5). Multiplying both sides of (16) by \((d^T\bar{x}_k+d_0)>0\) and noting that \(\bar{\lambda }(d^T\bar{x}_k+d_0)=(c^T\bar{x}_k+c_0),\) we get

$$\begin{aligned} (b^{k})^T\bar{v}^*(d^T\bar{x}_k+d_0)+(c_0-\bar{\lambda }d_0)(d^T\bar{x}_k+d_0) =0. \end{aligned}$$

Hence,

$$\begin{aligned} \begin{array}{lll} c_0d^T\bar{u}_k-d_0c^T\bar{u}_k+(b^k)^T\bar{v}_k &{}=&{}c_0d^T\bar{x}_k-d_0c^T\bar{x}_k+(b^k)^T(d^T\bar{x}_k+d_0)\bar{v}^*\\ &{}=&{}c_0d^T\bar{x}_k-d_0c^T\bar{x}_k-[c_0(d^T\bar{x}_k+d_0)-d_0(c^T\bar{x}_k+c_0)]\\ &{}=&{}0. \end{array} \end{aligned}$$

Thus, \(({\bar{u}}_k, {\bar{v}}_k)\) is a feasible solution of \(\mathrm{(D_k)}\). Since \(F(\bar{x}_k)=F(\bar{u}_k)=I(\bar{u}_k, \bar{v}_k)\), the pair \((\bar{u}_k, \bar{v}_k)\) is an optimal solution of \(\mathrm{(D_k)}\). The proof is complete. \(\square \)

Theorem A.3

(Converse duality) If \((\bar{u}_k,\bar{v}_k)\) is an optimal solution of \(\mathrm{({D}_k)}\) then there exists an optimal solution \(\bar{x}_k\) of \(\mathrm{(P_k)}\) such that the equality (15) holds.

Theorem A.4

One has

$$\begin{aligned} \mathrm{Sol(P_k)}=\mathrm{Pr}_{\mathbb {R}^n}{( Y_k)}, \end{aligned}$$

where \(\mathrm{Pr}_{\mathbb {R}^n}{({Y}_k)}= \{ u_k \in \mathbb {R}^n \mid (u_k,v_k)\in {Y}_k\},\) \({Y}_k\) is the feasible set of \(\mathrm{(D}_k)\) and \(\mathrm{Sol(P_k)}\) is the solution set of \(\mathrm{(P_k)}.\)

Corollary A.1

The solution set of \(\mathrm{(P_k)}\) is nonempty if and only if the feasible set of \(\mathrm{({D}_k)}\) is nonempty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, T.Q., Kim, D.S. A dual scheme for solving linear countable semi-infinite fractional programming problems. Optim Lett 16, 575–588 (2022). https://doi.org/10.1007/s11590-021-01735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01735-y

Keywords

Navigation