Skip to main content
Log in

Approximation algorithm for minimum partial multi-cover under a geometric setting

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In a minimum partial set multi-cover problem (MinPSMC), given an element set X, a collection of subsets \({\mathcal {S}} \subseteq 2^X\), a cost \(c_S\) on each set \(S\in {\mathcal {S}}\), a covering requirement \(r_x\) for each element \(x\in X\), and an integer k, the goal is to find a sub-collection \({\mathcal {F}} \subseteq {\mathcal {S}}\) to fully cover at least k elements such that the cost of \({\mathcal {F}}\) is as small as possible, where element x is fully covered by \({\mathcal {F}}\) if it belongs to at least \(r_x\) sets of \({\mathcal {F}}\). Recently, it was proved that MinPSMC is at least as hard as the densest k-subgraph problem. The question is: how about the problem in some geometric settings? In this paper, we consider the MinPSMC problem in which X is a set of points on the plane and \({\mathcal {S}}\) is a set of unit squares (MinPSMC-US). Under the assumption that \(r_x=f_x\) for every \(x\in X\), where \(f_x=|\{S\in {\mathcal {S}}:x\in S\}|\) is the number of sets containing element x, we design an approximation algorithm achieving approximation ratio \((1+\varepsilon )\) for MinPSMC-US.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39, 137–144 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. ESA LNCS 7501, 145–156 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Chan, T.M., Grant, E., K\(\ddot{o}\)nemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, pp. 1576–1585 (2012)

  4. Chan, T.M., Hu, N.: Geometric red-blue set cover for unit squares and related problems. Comput. Geom. 48(5), 380–385 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multi-cover problem in geometric settings. ACM Trans. Algorithms 9(1), Article 9 (2012)

  6. Chlamtáč, E., Dinitz, M., Konrad, C., Kortsarz, G.: The densest \(k\)-subhypergraph problem. SIAM J. Discrete Math. 32(2), 1458–1477 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chlamtáč, E., Dinitz, M., Krauthgamer, R.: Everywhere-sparse spanners via dense subgraphs. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS2012, New Brunswick, NJ, USA, pp. 758–767 (212)

  8. Chlamtáč, E., Dinitz, M., Makarychev, Y.: Minimizing the union: tight approximations for small set bipartite vertex expansion. In: SODA’17, pp. 881–899

  9. Gandhi, R., Khuller, S., Aravind, S.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  Google Scholar 

  10. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  11. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32, 130–136 (1985)

    Article  MathSciNet  Google Scholar 

  12. Inamdar, T.: Local search for geometric partial covering problems. In: CCCG2019, Edmonton, pp. Canada, 242–249 (2019)

  13. Inamdar, T., Varadarajan. K.R.: On partial covering for geometric set systems. In: 34th International Symposium on Computational Geometry, pp. 47:1–47:14 (2018)

  14. Manurangsi, P.: Almost-polynomial ratio ETH-hardness of approximating densest \(k\)-subgraph. STOC2017, Montreal, PQ, Canada, June 19–23, pp. 954–961

  15. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

  16. Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive influence problem in social network. J. Comb. Optim. 33, 791–802 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multi-cover. J. Comb. Optim. 34(1), 302–313 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ran, Y., Shi, Y., Tang, C., Zhang, Z.: A primal-dual algorithm for the minimum partial set multi-cover problem. J. Comb. Optim. 39(3), 725–746 (2020). A preliminary version appeared in COCOA’18, Atlanta, GA, USA, December 15–17, LNCS, vol. 11346, pp. 372–385

  19. Ran, Y., Zhang, Z., Tang, S., Du, D.-Z.: Breaking the \(r_{\max }\) barrier: enhanced approximation algorithms for partial set multi-cover problem. Informs J. Comput. (2020). https://doi.org/10.1287/ijoc.2020.0975

    Article  Google Scholar 

  20. Shi, Y., Ran, Y., Zhang, Z., Willson, J., Tong, G., Du, D.-Z.: Approximation algorithm for the partial set multi-cover problem. J. Glob. Optim. 75, 1133–1146 (2019)

    Article  MathSciNet  Google Scholar 

  21. Shi, Y., Ran, Y., Zhang, Z., Du, D.-Z.: A bicriteria algorithm for the minimum submodular cost partial set multi-cover problem. Theor. Comput. Sci. 803, 1–9 (2020). A preliminary version appeared in AAIM2018, Dallas, TX, USA, December 3–4, LNCS, vol. 11343, pp. 62–73

  22. Wang, F., Camacho, E., Xu, K.: Positive influence dominating set in online social networks. In: COCOA’09, LNCS, vol. 5573, pp. 313–321 (2009)

  23. Wang, F., Du, H., Camacho, E., Xu, K., Lee, W., Shi, Y., Shan, S.: On positive influence dominating sets in social networks. Theor. Comput. Sci. 412, 265–269 (2011)

    Article  MathSciNet  Google Scholar 

  24. Zhang, Z., Shi, Y., Willson, J., Du, D.-Z., Tong, G.: Viral marketing with positive influence. In: INFOCOM2017, Atlanta, GA, USA, May 1–4, pp. 1–8

Download references

Acknowledgements

This research work is supported in part by NSFC (11901533, U20A2068, 11771013), ZJNSFC (LD19A010001), and NSF (1907472).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Zhang or Ding-Zhu Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, Y., Huang, X., Zhang, Z. et al. Approximation algorithm for minimum partial multi-cover under a geometric setting. Optim Lett 16, 667–680 (2022). https://doi.org/10.1007/s11590-021-01746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01746-9

Keywords

Navigation