Skip to main content
Log in

Online total bipartite matching problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper analyzes a variant of Online Bipartite Matching in which incoming jobs must be matched to some worker, even if there are no available edges. A reward is only gained for matchings that are made across some edge. This paper gives matching upper and lower bounds for the most general version of this variation. It then provides an optimal policy for this problem when the underlying bipartite graph meets certain conditions and then identifies the most general conditions under which this policy is guaranteed to be optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aggarwal, G., Goel, G., Karande, C., Mehta, A.: Online vertex-weighted bipartite matching and single-bid budgeted allocations. In: Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pp. 1253–1264. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2011). http://dl.acm.org/citation.cfm?id=2133036.2133131

  2. Ashlagi, I., Burq, M., Dutta, C., Jaillet, P., Saberi, A., Sholley, C.: Edge weighted online windowed matching. In: Proceedings of the 2019 ACM Conference on Economics and Computation, EC ’19, pp. 729–742. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3328526.3329573

  3. Bahmani, B., Kapralov, M.: Improved bounds for online stochastic matching. In: Algorithms: ESA 2010, pp. 170–181. Springer, Berlin (2010)

  4. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic matching: Beating 1-1/e. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 117–126 (2009). https://doi.org/10.1109/FOCS.2009.72

  5. Gamlath, B., Kapralov, M., Maggiori, A., Svensson, O., Wajc, D.: Online matching with general arrivals (2019)

  6. Haeupler, B., Mirrokni, V.S., Zadimoghaddam, M.: Online stochastic weighted matching: Improved approximation algorithms. In: Internet and Network Economics, pp. 170–181. Springer, Berlin (2011)

  7. Huang, Z., Kang, N., Tang, Z.G., Wu, X., Zhang, Y., Zhu, X.: How to match when all vertices arrive online. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pp. 17–29. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3188745.3188858

  8. Huang, Z., Peng, B., Tang, Z.G., Tao, R., Wu, X., Zhang, Y.: Tight competitive ratios of classic matching algorithms in the fully online model, pp. 2875–2886 (2019). https://doi.org/10.1137/1.9781611975482.178

  9. Jaillet, P., Lu, X.: Online stochastic matching: new algorithms with better bounds. Math. Oper. Res. 39(3), 624–646 (2014). https://doi.org/10.1287/moor.2013.0621

    Article  MathSciNet  MATH  Google Scholar 

  10. Kao, M., Tate, S.R.: Online matching with blocked input. Inform. Process. Lett. 38(3), 113–116 (1991). https://doi.org/10.1016/0020-0190(91)90231-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipartite matching. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC ’90, pp. 352–358. ACM, New York, NY, USA (1990). https://doi.org/10.1145/100216.100262

  12. Lee, A.J., McLay, L.A., Jacobson, S.H.: Designing aviation security passenger screening systems using nonlinear control. SIAM J. Control Optim. 48(4), 2085–2105 (2009)

    Article  MathSciNet  Google Scholar 

  13. Manshadi, V.H., Gharan, S.O., Saberi, A.: Online stochastic matching: online actions based on offline statistics. Math. Oper. Res. 37(4), 559–573 (2012). https://doi.org/10.1287/moor.1120.0551

    Article  MathSciNet  MATH  Google Scholar 

  14. McLay, L.A., Jacobson, S.H., Nikolaev, A.G.: A sequential stochastic passenger screening problem for aviation security. IIE Trans. 41(6), 575–591 (2009)

    Article  Google Scholar 

  15. Mehta, A.: Online matching and ad allocation. Found. Trends Theor. Comput. Sci. 8(4), 265–368 (2013). https://doi.org/10.1561/0400000057

    Article  MathSciNet  MATH  Google Scholar 

  16. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online matching. J. ACM (2007). https://doi.org/10.1145/1284320.1284321

    Article  MathSciNet  MATH  Google Scholar 

  17. Nikolaev, A.G., Jacobson, S.H., McLay, L.A.: A sequential stochastic security system design problem for aviation security. Transp. Sci. 41(2), 182–194 (2007)

    Article  Google Scholar 

  18. Nikolaev, A.G., Lee, A.J., Jacobson, S.H.: Optimal aviation security screening strategies with dynamic passenger risk updates. IEEE Trans. Intell. Transp. Syst. 13(1), 203–212 (2012)

    Article  Google Scholar 

  19. Tsopelakos, A., Jacobson, S.H.: Optimal policies for the sequential stochastic threshold assignment problem. Technical report, University of Illinois, Urbana, IL (2018)

Download references

Acknowledgements

This research was supported in part by the Air Force Office of Scientific Research (FA9550-19-1-0106). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force, Department of Defense, or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghan Shanks.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanks, M., Jacobson, S.H. Online total bipartite matching problem. Optim Lett 16, 1411–1426 (2022). https://doi.org/10.1007/s11590-021-01814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01814-0

Keywords

Navigation