Skip to main content
Log in

Chebyshev center and inscribed balls: properties and calculations

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The relationship between the Chebyshev center of a closed convex bounded subset and a center of an inscribed ball for some “dual” set (a ball of maximal radius which is contained in the set) is considered in a real Hilbert space. The inscribed ball is unique in the discussed situation. We present an approximate algorithm for calculation of the Chebyshev center (or the center of the inscribed ball for the “dual” set) for a convex compact subset from \({{\mathbb {R}}}^{n}\) which is given via its supporting function. We reduce the problem to the solution of a linear programming problem and estimate the error between an approximate and the exact solutions in terms of the step of a grid. Few numerical examples are considered. The considered algorithm is efficient in the space of small dimension n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garkavi, A. L.: On the Chebyshev center and convex hull of a set, Uspekhi Mat. Nauk, 19:6(120) (1964), 139–145

  2. Beck, A., Eldar, A.C.: Regularization in regression with bounded noise: a Chebyshev center approach. SIAM J. Matrix Anal. Appl. 29(2), 606–625 (2007)

    Article  MathSciNet  Google Scholar 

  3. Duzhi, Wu., Zhou, Jie, Aiping, Hu.: A new approximate algorithm for the Chebyshev center. Automatica 49, 2483–2488 (2013)

    Article  MathSciNet  Google Scholar 

  4. Cerone, V., Piga, D., Regruto, D.: Set-membership error-in-variables identification through convex relaxation techniques. IEEE Transactions Automatic Control 57(2), 517–522 (2012)

    Article  MathSciNet  Google Scholar 

  5. Xu, S., Freund, R.M.: Solution methodologies for the smallest enclosing circle problem. Comput. Optim. Appl. 25, 283–292 (2003)

    Article  MathSciNet  Google Scholar 

  6. Xia, Y., Yang, M., Wang, S.: Chebyshev center of the intersection of balls: complexity, relaxation and approximation. Math. Program. 187, 287–315 (2021)

    Article  MathSciNet  Google Scholar 

  7. Milanese, M., Tempo, R.: Optimal algorithms theory for robust estimation and prediction. IEEE Transactions Automatic Control 30(8), 730–738 (1985)

    Article  MathSciNet  Google Scholar 

  8. Botkin, N.D., Turova-Botkina, V.L.: An algorithm for finding the Chebyshev center of a convex polyhedron. Appl. Math. Opt. 29, 211–222 (1994)

    Article  MathSciNet  Google Scholar 

  9. Eldar, Y.C., Beck, A., Teboulle, M.: A minimax Chebyshev estimator for bounded error estimation. IEEE Transactions Signal Process. 56(4), 1388–1397 (2008)

    Article  MathSciNet  Google Scholar 

  10. Xu, Z., Xia, Y., Wang, J.: Cheaper relaxation and better approximation for multi-ball constrained quadratic optimization and extension. J. Global Opt. 80, 341–356 (2021)

    Article  MathSciNet  Google Scholar 

  11. Pontryagin, L.S.: Linear differential games of pursuit. MATH USSR Sbornik 40(3), 285–303 (1981)

    Article  Google Scholar 

  12. Balashov, M.V., Polovinkin, E.S.: M-strongly convex subsets and their generating sets. Sbornik Math. 191(1), 25–60 (2000)

    Article  MathSciNet  Google Scholar 

  13. Frankowska, H., Olech, C.: R-convexity of the Integral of the Set-Valued Functions, Contributions to Analysis and Geometry, pp. 117–129. John Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  14. Polovinkin, E.S., Balashov, M.V.: Elements of convex and strongly convex analysis, 2nd edn. Fizmatlit, Moscow (2007) (in Russian)

  15. Polovinkin, E.S.: Strongly convex analysis. Sbornik Math. 187(2), 259–286 (1996)

    Article  MathSciNet  Google Scholar 

  16. Balashov, M.V.: On polyhedral approximations in an n-dimensional space. Comput. Math. Math. Phys. 56(10), 1679–1685 (2016)

    Article  MathSciNet  Google Scholar 

  17. Balashov, M. V.: Calculation of the Chebyshev center in a real Euclidean space, J. Convex Anal. 29 (2022). https://www.heldermann.de/JCA/JCA29/JCA291/jca29009.htm

  18. Rosca, D.: New uniform grids on the sphere. Astron. Astrophys. 520, A63 (2010)

    Article  Google Scholar 

  19. Rosca, D., Plonka, G.: Uniform spherical grids via equal area projection from the cube to the sphere. J. Comput. Appl. Math. 236(6), 1033–1041 (2011)

    Article  MathSciNet  Google Scholar 

  20. Berger, M.: Geometry I. Springer, Berlin Heidelberg (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the reviewers for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proposition 4.3, sketch of the proof

Without loss of generality, let \(i(B)=0\). Then, by Lemma 4.3, \(v\in i_M({\hat{B}})\) implies \(v+r_B B_1(0)\subset B+B_{\varepsilon }(0)\). Put \(D_B = \partial \,B\cap \partial \,B_{r_B}(0)\).

Let \(b\in D_B\) and p (depending on b) be the unit normal vector to the set B (and \(B_{r_B}(0)\)) at the point b. Consider the dual R-strong convex set C with \(C+B=B_R(0)\) and \(c=\arg \max \limits _{x\in C}(p,x)\). Then \(Rp = b+c = r_B p+c\), hence \(c=(R-r_B)p = R_C p\). Consider \(D_C = C\cap \partial \,B_{R_C}(0)\). By the Jung theorem ([20], Theorem 11.5.8), there exist unit vectors \(\{p_i\}_{i=1}^{k}\), \(k\le n+1\), and positive numbers \(\lambda _{i}^{k}\) with \(\sum \nolimits _{i=1}^{k}\lambda _i R_{C}p_i=0\) and \(R_{C}p_{i}\in \partial \,C\). Consequently, for particular \(b_i\in D_B\) with \((p_i,b_i)=s(p_i,B)\) (i.e. \(p_i=b_i/r_B\)), we have \(\sum \limits _{i=1}^{k}\lambda _i b_i=0\). For any \(v\in i_M({\hat{B}})\), by the equality \(\sum \limits _{i=1}^{k}\lambda _i (v,b_i)=0\), we obtain that there exists \(1\le i\le k\) with \((v,b_i)\ge 0\) or equivalently \((v,p_{i})\ge 0\). Using the supporting principle for R-strongly convex sets ([12], Corollary 2.1), we get \(B\subset B_R(b_i-Rp_i)\) and

$$\begin{aligned} \begin{array}{l} b_i+v\in (B+B_{\varepsilon }(0))\cap \{ x\ :\ (p_i,x)\ge r_B\}\qquad \qquad \qquad \qquad \qquad \qquad \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \subset (B_R(b_i-Rp_i)+B_{\varepsilon }(0))\cap \{ x\ :\ (p_i,x)\ge r_B\}. \end{array} \end{aligned}$$

Notice that \(b_{i}=r_{B}p_{i}\), \((p_{i},b_{i})=r_{B}\) and hence \(\{ x\ :\ (p_i,x)\ge r_B\}=\{ x\ :\ (p_i,x)\ge (p_{i},b_{i})\}\). So, \(b_i+v\) belongs to the spherical segment of radius \(R+\varepsilon \) and height \(\varepsilon =\Vert b_{i} - (b_{i}+\varepsilon p_{i}) \Vert \). Thus, by the Pythagoras theorem, \(\Vert v\Vert \le \sqrt{(R+\varepsilon )^2-R^2}=\sqrt{2R\varepsilon +\varepsilon ^2}\).

Now consider the case \(B_{\delta }(i(B))\subset \mathrm{co\,}D_{B}\). Fix \(\tau \in (0,1)\). Let \(D_{\tau }=\{ d_{i}\}_{i=1}^{N}\subset D_{B}\) be such a finite set that

$$\begin{aligned} h\left( \mathrm{co\,}D_{\tau }, \mathrm{co\,}D_{B}\right) <(1-\tau )\delta . \end{aligned}$$

Then \(B_{\tau \delta }(0)\subset \mathrm{co\,}D_{\tau }\). Note also that \(\Vert d_{i}\Vert =r_{B}\) for all i.

Let \(v\in i_M({\hat{B}})\) be a shift, by Lemma 4.3, \(v+D_{\tau }\subset v+B_{r_B}(0)\subset B+B_{\varepsilon }(0)\). Suppose that \(v\in \mathrm{cone\,}\{ d_{i_{1}},\dots ,d_{i_{k}}\}\) and moreover, \(\mathrm{co\,}\{ d_{i_{1}},\dots ,d_{i_{k}}\}\) is an edge of \(\mathrm{co\,}D_{\tau }\). Define the affine hull H of the points \(\{ d_{i_{j}}\}_{j=1}^{k}\). We have \(h=\varrho _{H}(0)\ge \tau \delta \). Define \(e=P_{H}0\). The angle \(\varphi _{0}\) between \(d_{i_{j}}\) (for any \(1\le j\le k\)) and e

$$\begin{aligned} \cos \varphi _{0}=\frac{h}{r_{B}}\ge \frac{\tau \delta }{r_{B}}. \end{aligned}$$

Similar to the proof of Theorem 4.2 [17] one can check that there exists j, \(1\le j\le k\), with the angle \(\angle (d_{i_{j}},v)\le \varphi _{0}\). We denote for brevity \(d_{0}=d_{i_{j}}\).

Consider a cone K with the vertex \(d_{0}\), the axis \(\{ td_{0}\ :\ t\ge 1\}\) and the angle between the axis and a generatrix equals \(\varphi _{0}\). Let \(H^{+}=\{ x\in {{\mathbb {R}}}^{n}\ :\ (d_{0},x-d_{0})\ge 0\}\). The hyperplane \(\partial \,H^{+}\) is supporting for B at the point \(d_{0}\), the hyperplane \(\partial \,H^{+}+\varepsilon \frac{d_{0}}{r_{B}}\) is supporting for \(B+B_{\varepsilon }(0)\) at the point \(d_{0}+\varepsilon \frac{d_{0}}{r_{B}}\).

Considering the intersection of the cone K with the \(\varepsilon \)-layer

$$\begin{aligned} \left( (B+B_{\varepsilon }(0))\backslash int B\right) \bigcap K \subset \left( H^{+}\cap ({{\mathbb {R}}}^{n}\backslash int H^{+}+\varepsilon \frac{d_{0}}{r_{B}}) \right) \bigcap K, \end{aligned}$$

we obtain that the point \(d_{0}+v\) lies between hyperplanes \(\partial \,H^{+}\) and \(\partial \,H^{+}+\varepsilon \frac{d_{0}}{r_{B}}\), the angle between v and \(d_{0}\) is less than \(\varphi _{0}\). Herefrom

$$\begin{aligned} \frac{\varepsilon }{\Vert v\Vert }\ge \cos \varphi _{0}\ge \frac{\tau \delta }{r_{B}}. \end{aligned}$$

Hence for any vector v with \(v+B_{r_B}(0)\subset B+B_{\varepsilon }(0)\) we obtain that \(\Vert v\Vert \le \varepsilon \frac{r_{B}}{\tau \delta }\). Thus \(h(i_{M}({\hat{B}}),i(B))\le \varepsilon \frac{r_B}{\tau \delta }\) for all \(\tau \in (0,1)\). Passing \(\tau \rightarrow 1-0\), we complete the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balashov, M.V. Chebyshev center and inscribed balls: properties and calculations. Optim Lett 16, 2299–2312 (2022). https://doi.org/10.1007/s11590-021-01823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01823-z

Keywords

Navigation