Skip to main content
Log in

A general variable neighborhood search approach for the minimum load coloring problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The minimum load coloring problem consists of finding a 2-coloring function that assign either a color red or blue to each node of a graph such that the (maximum) load is minimized, i.e., to reduce as much as possible the number of edges with, at least, one endpoint colored in red (symmetrically, in blue). This \(\mathcal {NP}\)-complete problem arises in Wavelength Division Multiplexing (WDM) technology and it has been used for broadcast WDM networks. In this paper, several procedures based on the Variable Neighborhood Search (VNS) methodology are proposed and compared on a set of random graphs and DIMACS benchmarks. Experimental results show that the proposed VNS variant exhibits a remarkable performance in comparison with the state-of-the-art methods. In particular, our approach achieves the best results in 48 out of 52 considered instances by employing, on average, less than 7 seconds. These results are further confirmed by conducting statistical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. GVNS and MS-GVNS were implemented in C++ and executed on an Intel Core i7 (2.5 GHz) with 8GB RAM.

  2. TALS was implemented in Visual C++ 6.0, and executed over a Intel Pentium (R) G630 Processor 2.70 MHz with 4 GB of RAM under Windows 7 System.

  3. MA was implemented in C++, and executed over a PC with Intel Pentium (R) G630 processor 2.70 GHz and 4 GB memory under Windows 7 (64 bits).

References

  1. Ageev, A.A., Fishkin, A.V., Kononov, A.V., Sevastianov, S.V.: Open block scheduling in optical communication networks. In: International Workshop on Approximation and Online Algorithms, pp. 13–26. Springer, Berlin (2003)

    Google Scholar 

  2. Ahuja, N., Baltz, A., Doerr, B., Pívětivý, A., Srivastav, A.: On the minimum load coloring problem. J. Discr. Algor. 5, 533–545 (2007)

  3. Barbero, F., Gutin, G., Jones, M., Sheng, B.: Parameterized and approximation algorithms for load coloring problem. Algorithmica 79, 211–229 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvo, B., Ceberio, J., Lozano, J. A.: Bayesian inference for algorithm ranking analysis. In Proceedings of the Genetic and Evolutionary Computation Conference Companion GECCO ’18 (pp. 324–325). New York, NY, USA: ACM (2018)

  5. Calvo, B., Shir, O. M., Ceberio, J., Doerr, C., Wang, H., Bäck, T., Lozano, J. A.: Bayesian performance analysis for black-box optimization benchmarking. In Proceedings of the Genetic and Evolutionary Computation Conference Companion GECCO ’19 (pp. 1789–1797). New York, NY, USA: ACM (2019)

  6. DIMACS https://mat.gsia.cmu.edu/COLOR/instances.html (2021)

  7. Duarte, A., Mladenović, N., Sánchez-Oro, J., Todosijević, R.: Variable neighborhood descent. In: Martí, R., Panos, P., Resende, M.G. (eds.) Handbook of Heuristics, pp. 1–27. Springer International Publishing, Cham (2016)

    Google Scholar 

  8. Even, G., Naor, J., Rao, S., Schieber, B.: Fast approximate graph partitioning algorithms. SIAM J. Comput. 28, 2187–2214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fei, T., Bo, W., Jin, W., Liu, D.: Artificial bee colony algorithm for the minimum load coloring problem. J. Comput. Theor. Nanosci. 10, 1968–1971 (2013)

    Article  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co, USA (1990)

    MATH  Google Scholar 

  11. Gutin, G., Jones, M.: Parameterized algorithms for load coloring problem. Inf. Process. Lett. 114, 446–449 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 313–337. Springer US, Boston, MA (2014)

    Chapter  Google Scholar 

  14. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Variable neighborhood search. In: Handbook of Metaheuristics, pp. 57–97. Springer, Cham (2019)

  15. Herrán, A., Colmenar, J., Duarte, A.: A variable neighborhood search approach for the vertex bisection problem. Inf. Sci. 476, 1–18 (2018)

    Article  MATH  Google Scholar 

  16. Herrán, A., Colmenar, J.M., Duarte, A.: A variable neighborhood search approach for the Hamiltonian p-median problem. Appl. Soft Comput. 80, 603–616 (2019)

    Article  MATH  Google Scholar 

  17. Martí, R., Resende, M.G., Ribeiro, C.C.: Multi-start methods for combinatorial optimization. Eur. J. Oper. Res. 226, 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mladenović, N., Todosijević, R., Urošević, D.: Less is more: basic variable neighborhood search for minimum differential dispersion problem. Inf. Sci. 326, 160–171 (2016)

    Article  Google Scholar 

  19. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Panadero, J., Doering, J., Kizys, R., Juan, A.A., Fito, A.: A variable neighborhood search simheuristic for project portfolio selection under uncertainty. J. Heuristics 26, 353–375 (2020)

    Article  Google Scholar 

  21. Pardo, E.G., Mladenović, N., Pantrigo, J.J., Duarte, A.: Variable formulation search for the cutwidth minimization problem. Appl. Soft Comput. 13, 2242–2252 (2013)

    Article  MATH  Google Scholar 

  22. Pěnička, R., Faigl, J., Saska, M.: Variable neighborhood search for the set orienteering problem and its application to other orienteering problem variants. Eur. J. Oper. Res. 276, 816–825 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sifaleras, A., Konstantaras, I.: A survey on variable neighborhood search methods for supply network inventory. In: Network Algorithms, Data Mining, and Applications, pp. 71–80. Springer, Cham (2020)

    Chapter  Google Scholar 

  24. Siva, C., Murthy, R., Guruswamy, M.: WDM Optical Networks: Concepts, Design, and Algorithms. Prentice Hall, Prentice (2001)

    Google Scholar 

  25. Uribe, N.R., Herrán, A., Colmenar, J.M., Duarte, A.: An improved grasp method for the multiple row equal facility layout problem. Exp. Syst. Appl. 182, 115184 (2021)

    Article  Google Scholar 

  26. Ye, A., Zhang, Z., Zhou, X., Miao, F.: Tabu assisted local search for the minimum load coloring problem. J. Comput. Theor. Nanosci. 11, 2476–2480 (2014)

    Article  Google Scholar 

  27. Zhang, Z., Li, Z., Qiao, X., Wang, W.: An efficient memetic algorithm for the minimum load coloring problem. Mathematics 7, 2073–2078 (2019)

    Article  Google Scholar 

Download references

Funding

This work has been partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU/AEI/FEDER, UE) under Grant Ref. PGC2018-095322-B-C22; and Comunidad de Madrid y Fondos Estructurales de la Unión Europea with Grant Ref. P2018/TCS-4566. This research has also been partially supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan, Grant No. BR10965172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manuel Colmenar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrán, A., Colmenar, J.M., Mladenović, N. et al. A general variable neighborhood search approach for the minimum load coloring problem. Optim Lett 17, 2065–2086 (2023). https://doi.org/10.1007/s11590-022-01861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01861-1

Keywords

Navigation