Skip to main content
Log in

General variable neighborhood search for the minimum stretch spanning tree problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Given an undirected graph, the minimum stretch spanning tree problem (MSSTP) deals with finding a spanning tree such that the maximum distance in the tree for adjacent nodes in the original graph, called the stretch, is minimum. This is an NP-hard problem with many applications in transportation and communication networks. We propose a general variable neighborhood search (GVNS) algorithm based on a balance between solution generation and improvement. To achieve this balance, we consider different construction heuristics and neighborhood strategies to efficiently explore the search space. To assess the merit of our proposal, we perform extensive experimentation on various classes of graphs consisting of 214 instances. A comparison in terms of solution quality and execution time with the best previous method, namely an artificial bee colony (ABC) algorithm, shows the superiority of GVNS. Results are compared using statistical tests to draw significant conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu, B.Y., Chao, K.M.: Spanning trees and optimization problems. CHAPMAN & HALL/CRC, Washington (2004)

    Book  MATH  Google Scholar 

  2. Chen, G., Chen, S., Guo, W., Chen, H.: The multi-criteria minimum spanning tree problem based genetic algorithm. Inf. Sci. 177(22), 5050–5063 (2007). https://doi.org/10.1016/j.ins.2007.06.005

    Article  MathSciNet  MATH  Google Scholar 

  3. Ozeki, K., Yamashita, T.: Spanning trees: a survey. Graphs Combin. 27(1), 1–26 (2011). https://doi.org/10.1007/s00373-010-0973-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Madkour, A., Aref, W.G., Rehman, F.U., Rahman, M.A., Basalamah, S.: A Survey of Shortest-Path Algorithms, arXiv preprint arXiv:1705.02044 (2017)

  5. Brass, P., Vigan, I., Xu, N.: Shortest path planning for a tethered robot. Comput. Geom. 48(9), 732–742 (2015). https://doi.org/10.1016/j.comgeo.2015.06.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Cintrano, C., Chicano, F., Alba, E.: Facing robustness as a multi-objective problem: a bi-objective shortest path problem in smart regions. Inf. Sci. 503, 255–273 (2019). https://doi.org/10.1016/j.ins.2019.07.014

    Article  MathSciNet  MATH  Google Scholar 

  7. Widmayer, P.: On shortest paths in VLSI design. Technical report, ACM digital library, Albert-Ludwigs University at Freiburg (1990)

    Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT Press (2009)

    MATH  Google Scholar 

  9. Singh, K., Sundar, S.: Artifical bee colony algorithm using problem-specific neighborhood strategies for the tree t-spanner problem. Appl. Soft Comput. 62, 110–118 (2018). https://doi.org/10.1016/j.asoc.2017.10.022

    Article  Google Scholar 

  10. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989). https://doi.org/10.1145/65950.65953

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Opt. 5(3), 423–454 (2017). https://doi.org/10.1007/s13675-016-0075-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997). https://doi.org/10.1016/S0305-0548(97)00031-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Sánchez-Oro, J., Pantrigo, J.J., Duarte, A.: Combining intensification and diversification strategies in VNS. An application to the vertex separation problem. Comput. Oper. Res. 52, 209–219 (2014). https://doi.org/10.1016/j.cor.2013.11.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Sánchez-Oro, J., Gavara, A.M., Laguna, M., Martí, R., Duarte, A.: Variable neighborhood scatter search for the incremental graph drawing problem. Comput. Optim. Appl. 68(3), 775–797 (2017). https://doi.org/10.1007/s10589-017-9926-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Rodríguez-García, M.A., Sánchez-Oro, J., Rodriguez-Tello, E., Monfroy, E., Duarte, A.: Two-dimensional bandwidth minimization problem: exact and heuristic approaches. Knowl. Based Syst. 214, 106–651 (2021). https://doi.org/10.1016/j.knosys.2020.106651

    Article  Google Scholar 

  16. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989). https://doi.org/10.1137/0218050

    Article  MathSciNet  MATH  Google Scholar 

  17. Liebchen, C., Wünsch, G.: The zoo of tree spanner problems. Discret. Appl. Math. 156(5), 569–587 (2008). https://doi.org/10.1016/j.dam.2007.07.001

    Article  MathSciNet  MATH  Google Scholar 

  18. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discret. Math. 8(3), 359–387 (1995). https://doi.org/10.1137/S0895480192237403

    Article  MathSciNet  MATH  Google Scholar 

  19. Álvarez-Miranda, E., Sinnl, M.: Mixed-integer programming approaches for the tree t-spanner problem. Optim. Lett. 13(7), 1693–1709 (2019). https://doi.org/10.1007/s11590-018-1340-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheong, O., Haverkort, H., Lee, M.: Computing a minimum-dilation spanning tree is NP-hard. Comput. Geom. 41(3), 188–205 (2008). https://doi.org/10.1016/j.comgeo.2007.12.001

    Article  MathSciNet  MATH  Google Scholar 

  21. de Mattos Gaiowski, M.F., de Souza, C.C.: Minimum dilation geometric spanning trees. In: Proceedings of XLIII Simposio Brasileiro de Pesquisa Operacional (SBPO), pp. 1824–1835. Ubatuba-SP, Brazil (2011)

    Google Scholar 

  22. Brandt, A.F., Gaiowski, M.F.A.M., Rezende, P.J., Souza, C.C.: Computing Minimum Dilation Spanning Trees in Geometric Graphs, In: 21st International Conference on Computing and Combinatorics (COCOON), pp. 297–309. Springer, Beijing, China (2015)

  23. Lin, L., Lin, Y.: The minimum stretch spanning tree problem for typical graphs, arXiv preprint arXiv:1712.03497 (2017)

  24. Lin, L., Lin, Y.: Optimality computation of the minimum stretch spanning tree problem. Appl. Math. Comput. 386, 125502 (2020). https://doi.org/10.1016/j.amc.2020.125502

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, L., Lin, Y.: The minimum stretch spanning tree problem for hamming graphs and higher-dimensional grids. J. Interconnect. Netw. 20(1), 2050004:1-2050004:15 (2020). https://doi.org/10.1142/S0219265920500048

    Article  Google Scholar 

  26. Boksberger, P., Kuhn, F., Wattenhofer, R.: On the approximation of the minimum maximum stretch tree problem. Technical report 409, Department of Computer Science, ETH Zurich (2003)

  27. Kardam, Y.S., Srivastava, K.: General variable neighborhood search for the minimum stretch spanning tree problem. In: Computational methods and data engineering (ICMDE), pp. 149–164. Springer (2021). https://doi.org/10.1007/978-981-15-6876-3_12

    Chapter  Google Scholar 

  28. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Martí, R., Pardalos, P., Resende, M. (eds.) Handbook of heuristics, pp. 759–787. Springer (2018)

    Chapter  Google Scholar 

  29. Duarte, A., Oro, J.S., Mladenović, N., Todosijević, R.: Variable neighborhood descent. In: Martí, R., Pardalos, P., Resende, M. (eds.) Handbook of heuristics, pp. 341–367. Springer (2018)

    Chapter  Google Scholar 

  30. Martí, R., Resende, M., Pardalos, P.: Handbook of heuristics. Springer International Publishing (2018)

    Book  MATH  Google Scholar 

  31. West, D.B.: Introduction to graph theory. Prentice Hall (2001)

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank University Grants Commission (UGC), India for providing RGNF fellowship [RGNF-2014-15-SC-UTT-74975] during the research. The research by Rafael Martí is funded by “Ministerio de Ciencia, Innovación y Universidades” of Spain under grant refs. PGC2018-0953322-B-C21 and PID2021-125709OB-C21 MCIU/AEI/FEDER-UE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Note- In all the tables the results of instances for which the performance of GVNS is same as that of ABC or ABC_Nbr are shown in bold whereas the values in bold with asterisk show the improvement of our algorithm over ABC and ABC_Nbr.

See Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.

Table 6 Comparison of results obtained by ABC, ABC_Nbr and GVNS for Wheel Graphs
Table 7 Comparison of results obtained by ABC, ABC_Nbr and GVNS for complete Graphs
Table 8 Comparison of results obtained by ABC, ABC_Nbr and GVNS for Split Graphs
Table 9 Comparison of results obtained by ABC, ABC_Nbr and GVNS for complete k-Partite Graphs
Table 10 Comparison of results obtained by ABC, ABC_Nbr and GVNS for Triangular Grids
Table 11 Comparison of results obtained by ABC, ABC_Nbr and GVNS for Rectangular Grids
Table 12 Comparison of results obtained by ABC, ABC_Nbr and GVNS for Triangulated Rectangular Grids
Table 13 Comparison of results obtained by ABC, ABC_Nbr and GVNS for small HB graphs
Table 14 Comparison of results obtained by ABC, ABC_Nbr and GVNS for medium HB graphs
Table 15 Comparison of results obtained by ABC, ABC_Nbr and GVNS for large HB graphs

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardam, Y.S., Srivastava, K. & Martí, R. General variable neighborhood search for the minimum stretch spanning tree problem. Optim Lett 17, 2005–2031 (2023). https://doi.org/10.1007/s11590-022-01918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01918-1

Keywords

Navigation