Abstract
We compare in this note a variety of methods for solving inverse Pareto eigenvalue problems which are aimed at constructing matrices whose Pareto spectrum contains a prescribed set of distinct reals. We choose to deal with such problems by first formulating them as nonlinear systems of equations which can be smooth or nonsmooth, depending on the chosen approach, and subsequently adopt Newton type methods to solve the corresponding systems. Our smooth approach includes the Squaring Trick (ST) and the so-called Mehrotra Predictor Corrector Method (MPCM), adapted in this context to inverse Pareto eigenvalue complementarity problems. For the nonsmooth approach, we consider the Lattice Projection Method (LPM), and two other nonsmooth methods using complementarity function techniques, namely \(\text {SNM}_{\text {FB}}\) and \(\text {SNM}_{\text {min}}\) (with Fischer-Burmeister and minimum complementarity functions respectively). We compare the five methods using the performance profiles (Dolan, Moré), where the average number of iterations and the percentage of failures are the performance measures. Numerical tests show that among the methods considered, \(\text {SNM}_{\text {FB}}\) performs the best in terms of the number of failures whereas LPM surpasses all other methods with respect to the number of iterations. Finally, we point out possible extensions of the discussed methods to the inverse quadratic pencil eigenvalue complementarity problem.


Similar content being viewed by others
References
Adly, S., Rammal, H.: A new method for solving Pareto eigenvalue complementarity problems. Comput. Optim. Appl. 55, 703–731 (2013)
Adly, S., Rammal, H.: New method for solving second-order cone Eigenvalue complementarity problems. J. Optim. Theory Appl. 165, 563–585 (2015)
Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. 49, 299–318 (2011)
Adly, S., Haddou, M., Le, M. H.: Interior point methods for solving Pareto eigenvalue complementarity problems. arXiv: hal-0318.4766v2
Brás, C.P., Júdice, J.J., Sherali, H.D.: On the solution of the inverse eigenvalue complementarity problem. J. Optim. Theory Appl. 162, 88–106 (2014)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York; Reprinted by 1990. SIAM, Philadelphia (1983)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)
Gajardo, P., Seeger, A.: Reconstructing a matrix from a partial sampling of Pareto eigenvalues. Comput. Optim. Appl. 51, 1119–1135 (2012)
He, J.S., Li, C., Wang, J.H.: Newton’s method for underdetermined systems of equations under the \(\gamma\)-condition. Numer. Funct. Anal. Optim. 28, 663–679 (2007)
Iusem Alfredo, N., Júdice Joaquim, J., Sessa, V., Sarabando, P.: Splitting methods for the Eigenvalue complementarity problem. Optim. Methods Softw. 34, 1184–1212 (2019)
Júdice, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric Eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008)
Júdice, J.J., Sherali, H.D., Ribeiro, I.M.: The Eigenvalue complementarity problem. Comput. Appl. 37, 139–156 (2007)
Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Rosa, S.S.: On the asymmetric Eigenvalue complementarity problem. Optim. Methods Softw. 24, 549–568 (2009)
Le Thi, H.A., Moeini, M., Pham Dinh, T., et al.: A DC programming approach for solving the symmetric Eigenvalue complementarity problem. Comput. Optim. Appl. 51, 1097–1117 (2012)
Ling, C., He, H., Qi, L.: On the cone eigenvalue complementarity problem for higher-order tensors. Comput. Optim. Appl. 63, 143–168 (2016)
Martins, J.A.C., Barbarin, S., Raous, M., Pinto da Costa, A.: Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction. Comput. Methods Appl. Mech. Eng. 177, 289–328 (1999)
Martins, J.A.C., Pinto da Costa, A.: Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction. Int. J. Solids Struct. 37, 2519–2564 (2000)
Martins, J.A.C., Pinto da Costa, A.: Bifurcations and instabilities in frictional contact problems: theoretical relations, computational methods and numerical results. In: European Congress on Computational Methods in Applied Sciences and Engineering: ECCOMAS (2004)
Martins, J.A.C., Pinto da Costa, A.: Computation of bifurcations and instabilities in some frictional contact problems. In: European Conference on Computational Mechanics: ECCM (2001)
Martins, J.A.C., Pinto da Costa, A., Figueiredo, I.N., Júdice, J.J.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)
Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)
Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control. Optim. 15, 957–972 (1977)
Niu, Y.S., Pham Dinh, T., Le Thi, H.A., Júdice, J.J.: Efficient DC programming approaches for the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 28, 812–829 (2013)
Pang, J.S., Facchinei, F.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Operations Research, vol. 2. Springer, New York (2003)
Pinto da Costa, A., Figueiredo, I., Júdice, J., Martins, J.: A complementarity eigenproblem in the stability analysis of nitedimensional elastic systems with frictional contact. In: Ferris, M., Pang, J.S., Mangasarian, O. (eds.) Complementarity: Applications, Algorithms and Extensions, pp. 67–83. Kluwer, New York (2001)
Pinto da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 45, 25–57 (2010)
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
Queiroz, M., Júdice, J.J., Humes, C.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2003)
Seeger, A., Vicente-Pérez, J.: On cardinality of Pareto spectra. Electron. J. Linear Algebra 22, 758–766 (2011)
Seeger, A., Vicente-Pérez, J.: Inverse eigenvalue problems for linear complementarity systems. Linear Algebra App. 435, 3029–3044 (2011)
Walker, H.F., Watson, L.T.: Least-change secant update methods for underdetermined systems. SIAM J. Numer. Anal. 27, 1227–1262 (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Adly, S., Le, M.H. Solving inverse Pareto eigenvalue problems. Optim Lett 17, 829–849 (2023). https://doi.org/10.1007/s11590-022-01954-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-022-01954-x