Skip to main content
Log in

An uncertain minimization problem: robust optimization versus optimization of robustness

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this work, we use a method of optimization of robustness to address an uncertain minimization problem. We obtain a problem called robust counterpart of the uncertain problem in the sense of stability radius. We compare the optimal solutions of this problem to those of the well-known robust counterpart defined by robust optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ben-Haïm, Y.: Information-Gap Decision Theory, Series on Decision and Risk. Academic Press Inc, San Diego (2001)

    MATH  Google Scholar 

  2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization, Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  3. Ben-Tal, A., ElGhaoui, L., Nemirovski, A.: Robustness, Handbook of Semidefinite Programming, pp. 139–162. Springer, Boston (2000)

    Book  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust optimization - methodology and applications. Math. Program. 92, 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 4 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beyer, H.G., Sendhoff, B.: Robust optimization – A comprehensive survey. Comput. Methods Appl. Mech. Engrg. 196, 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciligot-Travain, M.: Sur une notion de robustesse. Ann. I.S.U.P. 56(23), 37–48 (2012)

    MathSciNet  Google Scholar 

  10. Embrechts, P., Hofert, M.: A note on generalized inverses. Math. Methods Oper. Res. 77, 3 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Falkner, N., Teschel, G.: On the substitution rule for Lebesgue-Stieltjes integrals. Expo. Math. 30, 4 (2012)

    Article  MathSciNet  Google Scholar 

  12. Feng, C., Wang, H., Tu, X., Kowalski, J.: A note on generalized inverses of distribution function and quantile transformation. Appl. Math. 3, 12A (2012)

    Article  MathSciNet  Google Scholar 

  13. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235(3), 471–483 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hindi, H. A., Boyd, S. P.: Robust solutions to \(\ell _1\), \(\ell _2\), and \(\ell _{\infty }\), uncertain linear approximation problems using convex optimization. In: Proceedings of the American control Conference (1998)

  15. Klement, E.P., Mesiar, R., Pap, E.: Quasi- and pseudo-inverses of monotone functions, and the construction of the \(t\)-norms. Fuzzy Sets Syst. 104, 1 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. El-Ghaoui, L., Lebret, H.: Robust solutions To least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schiable, S.: Parameter-free convex equivalent and dual programs of fractional programming problems. Oper. Res. 18, 187–196 (1974)

    MathSciNet  Google Scholar 

  18. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees and the editor for their constructive comments which have contributed to the final presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Barro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barro, M., Traore, S. An uncertain minimization problem: robust optimization versus optimization of robustness. Optim Lett 17, 1833–1852 (2023). https://doi.org/10.1007/s11590-022-01965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01965-8

Keywords