Skip to main content
Log in

A unified approach to approximate partial, prize-collecting, and budgeted sweep cover problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In a sweep cover problem, mobile sensors move around to collect information from positions of interest (PoIs) periodically and timely. A PoI is sweep-covered if it is visited at least once in every time period t. In this paper, we study approximation algorithms on three types of sweep cover problems. The partial sweep cover problem (PSC) aims to use the minimum number of mobile sensors to sweep-cover at least a given number of PoIs. The prize-collecting sweep cover problem aims to minimize the cost of mobile sensors plus the penalties on those PoIs that are not sweep-covered. The budgeted sweep cover problem (BSC) aims to use a budgeted number N of mobile sensors to sweep-cover as many PoIs as possible. We propose a unified approach which can yield approximation algorithms for PSC and PCSC within approximation ratio at most 8, and a bicriteria \((4,\frac{1}{2})\)-approximation algorithm for BSC (that is, no more than 4N mobile sensors are used to sweep-cover at least \(\frac{1}{2}opt\) PoIs, where opt is the number of PoIs that can be sweep-covered by an optimal solution). Furthermore, our results for PSC and BSC can be extended to their weighted version, and our algorithm for PCSC answers a question proposed in Liang et al. (Theor Comput Sci, 2022) on PCSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Archer, A., Bateni, M.H., Hajiaghayi, M.T., Karloff, H.: Improved approximation algorithms for prize-collecting steiner tree and tsp. SIAM J. Comput. 40(2), 309–332 (2011)

    Article  MathSciNet  Google Scholar 

  2. Arora, S., Karakostas, G.: A 2+\(\epsilon \) approximation algorithm for the k-mst problem. Math. Program. 107(3), 491–504 (2006)

    Article  MathSciNet  Google Scholar 

  3. Arya, S., Ramesh, H.: A 2.5-factor approximation algorithm for the k-mst problem. Inf. Process. Lett. 65(3), 117–118 (1998)

    Article  MathSciNet  Google Scholar 

  4. Azar, B.A.Y., Blum, A., Vempala, S.: New approximation guarantees for minimum-weight \(k\)-trees and prize-collecting salesmen. SIAM J. Comput. 28(1), 254–262 (1998)

    Article  MathSciNet  Google Scholar 

  5. Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–636 (1989)

    Article  MathSciNet  Google Scholar 

  6. Baruch, A., Yossi, A., Avrim, B., Vempala, S.: Improved approximation guarantees for minimum-weight \(k\)-trees and prize-collecting salesmen. SIAM J. Comput. 28(1), 254–262 (1999)

    MathSciNet  Google Scholar 

  7. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Math. Program. 59(1), 413–420 (1993)

    Article  MathSciNet  Google Scholar 

  8. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k mst problem. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 442–448 (1996)

  9. Chen, Z., Zhu, X., Gao, X., Wu, F., Gu, J., Chen, G.: Efficient scheduling strategies for mobile sensors in sweep coverage problem. In: 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–4 (2016)

  10. Chen, Qingqing, Huang, Xiaohui, Ran, Yingli: Approximation algorithm for distance constraint sweep coverage without predetermined base stations. Discrete Math. Algorithms Appl. 10(05), 1850064 (2018)

    Article  MathSciNet  Google Scholar 

  11. Cheng, W., Li, M., Liu, K., Liu, Y., Li, X., Liao, X.: Sweep coverage with mobile sensors. In: 2008 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–9 (2008)

  12. Chudak, F.A., Roughgarden, T., Williamson, D.P.: Approximate \(k\)-msts and \(k\)-steiner trees via the primal-dual method and lagrangean relaxation. Math. Program. 100(2), 411–421 (2004)

    Article  MathSciNet  Google Scholar 

  13. Feng, Y., Gao, X., Wu, F., Chen, G.: Shorten the trajectory of mobile sensors in sweep coverage problem. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2015)

  14. Gage, D.W.: Command Control for Many-robot Systems. Technical Report, Naval Command Control and Ocean Surveillance Center Rdt and E Div San Diego CA (1992)

  15. Gao, X., Fan, J., Wu, F., Chen, G.: Cooperative sweep coverage problem with mobile sensors. IEEE Trans. Mob. Comput 1–1 (2020)

  16. Gao, X., Fan, J., Fan, W., Chen, G.: Approximation algorithms for sweep coverage problem with multiple mobile sensors. IEEE/ACM Trans. Netw. 26(2), 990–1003 (2018)

    Article  Google Scholar 

  17. Garg, N.: A 3-approximation for the minimum tree spanning \(k\) vertices. In: Proceedings of 37th Conference on Foundations of Computer Science. pp. 302–309. IEEE (1996)

  18. Garg, N.: Saving an epsilon: a 2-approximation for the \(k\)-mst problem in graphs. In: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pp. 396–402 (2005)

  19. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296 (1995)

    Article  MathSciNet  Google Scholar 

  20. Gorain, B., Mandal, P.S.: Approximation algorithm for sweep coverage on graph. Inf. Process. Lett. 115(9), 712–718 (2015)

    Article  MathSciNet  Google Scholar 

  21. Gorain, B., Mandal, P.S.: Solving energy issues for sweep coverage in wireless sensor networks. Discrets Appl. Math. 228, 130–139 (2017)

    Article  MathSciNet  Google Scholar 

  22. Huang, P., Zhu, W., Liao, K., Sellis, T., Zhiyong, Y., Guo, L.: Efficient algorithms for flexible sweep coverage in crowdsensing. IEEE Access 6, 50055–50065 (2018)

    Article  Google Scholar 

  23. Johnson, D.S., Minkoff, M., & Phillips, S.: The prize collecting steiner tree problem: theory and practice. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp. 760–769. Society for Industrial and Applied Mathematics (2000)

  24. Levin, A.: A better approximation algorithm for the budget prize collecting tree problem. Oper. Res. Lett. 32(4), 316–319 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, M., Cheng, W., Liu, K., He, Y., Li, X., Liao, X.: Sweep coverage with mobile sensors. IEEE Trans. Mob. Comput. 10(11), 1534–1545 (2011)

    Article  Google Scholar 

  26. Liang, D., Shen, H.: Chargeable sweep coverage problem. arXiv e-prints, arXiv:2105.06030 (2021)

  27. Liang, W., Zhang, Z.: Approximation algorithm for prize-collecting sweep cover with base stations. Theor. Comput. Sci., a preliminary version was presented in AAIM2020 (2022)

  28. Liang, D., Shen, H.: Efficient algorithms for max-weighted point sweep coverage on lines. Sensors (Basel, Switzerland) 21(4), 1457 (2021)

    Article  ADS  PubMed  Google Scholar 

  29. Liang, J., Huang, X., Zhang, Z.: Approximation algorithms for distance constraint sweep coverage with base stations. J. Comb. Optim. 37(4), 1111–1125 (2019)

    Article  MathSciNet  Google Scholar 

  30. Liu, C., Hongwei, D., Ye, Q., Wen, X.: Group sweep coverage with guaranteed approximation ratio. Theoret. Comput. Sci. 836, 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  31. Nie, Z., Hongwei, D.: An approximation algorithm for general energy restricted sweep coverage problem. Theoret. Comput. Sci. 864, 70–79 (2021)

    Article  MathSciNet  Google Scholar 

  32. Paul, A., Freund, D., Ferber, A., Shmoys, D.B., Williamson, D.P.: Budgeted prize-collecting traveling salesman and minimum spanning tree problems. Math. Oper. Res. 45(2), 576–590 (2020)

    Article  MathSciNet  Google Scholar 

  33. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.: Spanning trees–short or small. SIAM J. Discrete Math. 9(2), 178–200 (1996)

    Article  MathSciNet  Google Scholar 

  34. Vazirani, V.V.: Approximation Algoritms. Springer, New York (2001)

    Google Scholar 

  35. Wu, W., Zhang, Z., Lee, W., Du, D.: Optimal Coverage in Wireless Sensor Networks. Springer, New York (2020)

    Book  Google Scholar 

  36. Yaoyao, G., Bozda, D., Brewer, R.W., Ekici, E.: Data harvesting with mobile elements in wireless sensor networks. Comput. Netw. 50(17), 3449–3465 (2006)

    Article  Google Scholar 

  37. Zhao, D., Ma, H., Liu, L.: Mobile sensor scheduling for timely sweep coverage. In: IEEE Wireless Communications and Networking Conference, WCNC, pp. 1771–1776, 04 (2012)

  38. Zixiong, N., Chuang, L., Hongwei, D.: Data sensing with limited mobile sensors in sweep coverage. In: International Conference on Combinatorial Optimization and Applications, pp. 669–680. Springer (2020)

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (U20A2068), Zhejiang Provincial Natural Science Foundation of China (LD19A010001) and NSF of USA under Grant III-1907472.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Zhang or Ding-Zhu Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Zhang, Z. & Du, DZ. A unified approach to approximate partial, prize-collecting, and budgeted sweep cover problems. Optim Lett 18, 575–589 (2024). https://doi.org/10.1007/s11590-023-02008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-023-02008-6

Keywords

Navigation