Skip to main content
Log in

Exact QR factorizations of rectangular matrices

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

QR factorization is a key tool in mathematics, computer science, operations research, and engineering. This paper presents the roundoff-error-free (REF) QR factorization framework comprising integer-preserving versions of the standard and the thin QR factorizations and associated algorithms to compute them. Specifically, the standard REF QR factorization factors a given matrix \(A\in {\mathbb {Z}}^{m\times n}\) as \(A=QDR\), where \(Q\in {\mathbb {Z}}^{m\times m}\) has pairwise orthogonal columns, D is a diagonal matrix, and \(R\in {\mathbb {Z}}^{m\times n}\) is an upper trapezoidal matrix; notably, the entries of Q and R are integral, while the entries of D are reciprocals of integers. In the thin REF QR factorization, \(Q\in {\mathbb {Z}}^{m\times n}\) also has pairwise orthogonal columns, and \(R\in {\mathbb {Z}}^{n\times n}\) is also an upper triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, every operation used to compute these factors is integral; thus, REF QR is guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of every entry in the REF QR factorizations (and within the algorithms to compute them) is bounded polynomially. Notable applications of our REF QR factorizations include finding exact least squares or exact basic solutions, \({\textbf{x}}\in {\mathbb {Q}}^n\), to any given full column rank or rank deficient linear system \(A {\textbf{x}}= {\textbf{b}}\), respectively. In addition, our exact factorizations can be used as a subroutine within exact and/or high-precision quadratic programming. Altogether, REF QR provides a framework to obtain exact orthogonal factorizations of any rational matrix (as any rational/decimal matrix can be easily transformed into an integral matrix).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during this study.

Notes

  1. Throughout the paper, the symbol \(\triangleq \) means “is defined as.”

References

  1. Bauer, F.L.: Elimination with weighted row combinations for solving linear equations and least squares problems. Numer. Math. 7(4), 338–352 (1965). https://doi.org/10.1007/BF01436528

    Article  MathSciNet  Google Scholar 

  2. Golub, G.H., Wilkinson, J.H.: Note on the iterative refinement of least squares solution. Numer. Math. 9(2), 139–148 (1966)

    Article  MathSciNet  Google Scholar 

  3. Chan, T.F.: Rank revealing QR factorizations. Linear Algebra Appl. 88(C), 67–82 (1987). https://doi.org/10.1016/0024-3795(87)90103-0

    Article  MathSciNet  Google Scholar 

  4. Chan, T.F., Hansen, P.C.: Some applications of the rank revealing QR factorization. Stat. Comput. 13(3), 727–741 (1992)

    Article  MathSciNet  Google Scholar 

  5. Higham, N.J.: QR factorization with complete pivoting and accurate computation of the SVD. Linear Algebra Appl. 309(1–3), 153–174 (2000)

    Article  MathSciNet  Google Scholar 

  6. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Siam, Philadelphia, PA, USA (2002)

    Book  Google Scholar 

  7. Fukaya, T., Kannan, R., Nakatsukasa, Y., Yamamoto, Y., Yanagisawa, Y.: Shifted Cholesky QR for computing the QR factorization of ill-conditioned matrices. SIAM J. Sci. Comput. 42(1), 477–503 (2020). https://doi.org/10.1137/18M1218212. arXiv:1809.11085

    Article  MathSciNet  Google Scholar 

  8. Francis, J.G.F.: The QR transformation a unitary analogue to the LR transformation-part 1. Comput. J. 4(3), 265–271 (1961). https://doi.org/10.1093/comjnl/4.3.265

    Article  MathSciNet  Google Scholar 

  9. Kublanovskaya, V.N.: On some algorithms for the solution of the complete eigenvalue problem. USSR Comput. Math. Math. Phys. 1(3), 637–657 (1962). https://doi.org/10.1016/0041-5553(63)90168-X

    Article  Google Scholar 

  10. Parlett, B.N., Poole, W.G., Jr.: A geometric theory for the QR, LU and power iterations. SIAM J. Numer. Anal. 10(2), 389–412 (1973)

    Article  MathSciNet  Google Scholar 

  11. Gill, P.E., Murray, W.: Numerically stable methods for quadratic programming. Math. Program. 14(1), 349–372 (1978). https://doi.org/10.1007/BF01588976

    Article  MathSciNet  Google Scholar 

  12. Arioli, M.: The use of QR factorization in sparse quadratic programming and backward error issues. SIAM J. Matrix Anal. Appl. 21(3), 825–839 (2000). https://doi.org/10.1137/S0895479898338147

    Article  MathSciNet  Google Scholar 

  13. Weber, T., Sager, S., Gleixner, A.: Solving quadratic programs to high precision using scaled iterative refinement. Math. Program. Comput. 11(3), 421–455 (2019)

    Article  MathSciNet  Google Scholar 

  14. Gärtner, B., Schönherr, S.: An efficient, exact, and generic quadratic programming solver for geometric optimization. In: Proceedings of the Sixteenth Annual Symposium on Computational Geometry, pp. 110–118 (2000)

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, vol. 3, 4th edn. Johns Hopkins University Press, Baltimore (2013)

  16. Drmač, Z., Bujanović, Z.: On the failure of rank-revealing QR factorization software: a case study. ACM Trans. Math. Softw. (TOMS) 35(2), 1–28 (2008). https://doi.org/10.1145/1377612.1377616

    Article  MathSciNet  Google Scholar 

  17. Zhang, S., Baharlouei, E., Wu, P.: High accuracy matrix computations on neural engines: A study of QR factorization and its applications. In: Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, pp. 17–28. Association for Computing Machinery, Inc, New York, USA (2020). https://doi.org/10.1145/3369583.3392685

  18. Escobedo, A.R., Moreno-Centeno, E.: Roundoff-error-free algorithms for solving linear systems via Cholesky and LU factorizations. INFORMS J. Comput. 27(4), 677–689 (2015). https://doi.org/10.1287/ijoc.2015.0653

    Article  MathSciNet  Google Scholar 

  19. Lourenco, C.J., Moreno-Centeno, E.: Exactly solving sparse rational linear systems via roundoff-error-free Cholesky Factorizations. SIAM J. Matrix Anal. Appl. 43(1), 439–463 (2022). https://doi.org/10.1137/20M1371592

    Article  MathSciNet  Google Scholar 

  20. Zhou, W., Jeffrey, D.J.: Fraction-free matrix factors: new forms for LU and QR factors. Front. Comput. Sci. China 2(1), 67–80 (2008). https://doi.org/10.1007/s11704-008-0005-z

    Article  Google Scholar 

  21. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, USA (2006)

    Book  Google Scholar 

  22. Rice, J.R.: Experiments on Gram–Schmidt orthogonalization. Math. Comput. 20(94), 325–328 (1966)

    Article  MathSciNet  Google Scholar 

  23. Givens, W.: Computation of plain unitary rotations transforming a general matrix to triangular form. J. Soc. Ind. Appl. Math. 6(1), 26–50 (1958)

    Article  MathSciNet  Google Scholar 

  24. Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. J. ACM (JACM) 5(4), 339–342 (1958)

    Article  MathSciNet  Google Scholar 

  25. Pursell, L., Trimble, S.Y.: Gram–Schmidt orthogonalization by Gauss elimination. Am. Math. Mon. 98(6), 544–549 (1991). https://doi.org/10.1080/00029890.1991.11995755

    Article  MathSciNet  Google Scholar 

  26. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Stand. Sect. B 71(4), 241–245 (1967)

    Article  MathSciNet  Google Scholar 

  27. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elimination. Math. Comput. 22(103), 565–578 (1968)

    MathSciNet  Google Scholar 

  28. Montante-Pardo, R.M., Méndez-Cavazos, M.A.: Un método númerico para cálculo matricial. Rev. Técnico-Científica de Divulgación 2, 1–24 (1977)

    Google Scholar 

  29. Lourenco, C., Escobedo, A.R., Moreno-Centeno, E., Davis, T.A.: Exact solution of sparse linear systems via left-looking roundoff-error-free LU factorization in time proportional to arithmetic work. SIAM J. Matrix Anal. Appl. 40(2), 609–638 (2019). https://doi.org/10.1137/18M1202499

    Article  MathSciNet  Google Scholar 

  30. Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. Sci. Math. 17(1), 240–246 (1893)

    Google Scholar 

  31. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  32. Davis, T.A., Rajamanickam, S., Sid-Lakhdar, W.M.: A survey of direct methods for sparse linear systems. Acta Numer. 25, 383–566 (2016). https://doi.org/10.1017/S0962492916000076

    Article  MathSciNet  Google Scholar 

  33. Foster, L., Kommu, R.: Algorithm 853: an efficient algorithm for solving rank-deficient least squares problems. ACM Trans. Math. Softw. (TOMS) 32(1), 157–165 (2006)

    Article  MathSciNet  Google Scholar 

  34. Foster, L.V., Davis, T.: Reliable calculation of numerical rank, null space bases, basic solutions and pseudoinverse solutions using SuiteSparseQR. In: Householder Symposium XVIII on Numerical Linear Algebra, p. 79 (2011)

  35. Golub, G., Pereyra, V.: Differentiation of pseudoinverses, separable nonlinear least squares and other tales. In: Generalized Inverses and Applications, pp. 303–324. Academic Press, New York (1976)

Download references

Funding

The first author was partially supported by the USNA JR NARC. The second author was partially supported by NSF under Grant No OAC-1835499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Lourenco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenco, C., Moreno-Centeno, E. Exact QR factorizations of rectangular matrices. Optim Lett 18, 681–695 (2024). https://doi.org/10.1007/s11590-024-02095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-024-02095-z

Keywords

Navigation