Skip to main content
Log in

A Linear Quadratic Controller Design Incorporating a Parametric Sensitivity Constraint

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose a synthesis method of parametric sensitivity constrained linear quadratic (SCLQ) controller for an uncertain linear time invariant (LTI) system. System sensitivity to parameter variation is handled through an additional quadratic trajectory parametric sensitivity term in the standard LQ criterion to be minimized. The main purpose here is to find a suboptimal linear quadratic control taking explicitly into account the parametric uncertainties. The paper main contribution is threefold: 1) A descriptor system approach is used to show that the underlying singular linear-quadratic optimal control problem leads to a non-standard Riccati equation. 2) A solution to the proposed control problem is then given based on a connection to the so-called Lur’e matrix equations. 3) A synthesis method of multiple parametric SCLQ controllers is proposed to cover the whole parametric uncertainty while degrading as less as possible the intrinsic robustness properties of each local linear quadratic controller. Some examples are presented in order to illustrate the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yagoubi. A parametric sensitivity constrained linear quadratic controller. In Proceedings of the 22nd Mediterranean Conference on Control and Automation, IEEE, Palermo, Italy 2014.

    Google Scholar 

  2. M. Yagoubi. Synthesis of multiple sensitivity constrained controllers for parametric uncertain LTI systems. In Proceedings of the 23rd Mediterranean Conference on Control and Automation, IEEE, Torremolinos, Spain, 2015.

    Google Scholar 

  3. E. Kreindler, Formulation of the minimum trajectory sensitivity problem. IEEE Transactions on Automatic Control, vol 14, no. 2, pp. 206–207, 1969.

    Article  MathSciNet  Google Scholar 

  4. M. M. Newmann, On attempts to reduce the sensitivity of the optimal linear regulator to a parameter change. International Journal of Control, vol 11, no. 6, pp. 1079–1084, 1970.

    Article  MathSciNet  Google Scholar 

  5. P. J. Fleming, M. M. Newmann, Design algorithms for a sensitivity constrained suboptimal regulator. International Journal of Control, vol 25, no. 6, pp. 965–978, 1977.

    Article  MathSciNet  Google Scholar 

  6. D. Kyr, M. Buchner. A parametric LQ approach to multiobjective control system design. In Proceedings of the 27th IEEE Conference on Decision and Control, IEEE, Austin, USA, pp. 1278–1282, 1988.

    Chapter  Google Scholar 

  7. A. Ansari, T. Murphey. Minimal parametric sensitivity trajectories for nonlinear systems. In Proceedings of 2013 American Control Conference, IEEE, Washington, USA, 2013.

    Google Scholar 

  8. G. P. Liu, R. J. Patton, Insensitive and robust control design via output feedback eigenstructure assignment. International Journal of Robust and Nonlinear Control, vol 10, no. 9, pp. 687–697, 2000.

    Article  MathSciNet  Google Scholar 

  9. P. Apkarian, Nonsmooth µ-synthesis. International Journal of Robust and Nonlinear Control, vol 21, no. 13, pp. 1493–1508, 2011.

    Article  MathSciNet  Google Scholar 

  10. X. G. Guo, G. H. Yang, Insensitive output feedback H8 control of delta operator systems with insensitivity to sampling time jitter. International Journal of Robust and Nonlinear Control, vol 24, no. 4, pp. 725–743, 2014.

    Article  MathSciNet  Google Scholar 

  11. M. Yagoubi, P. Chevrel. A solution to the insensitive H2 problem and its application to automotive control design. In Proceedings of the 15th Triennial World Congress, IFAC, Barcelona, Spain, 2002.

    Google Scholar 

  12. M. Yagoubi, P. Chevrel. A convex method for the parametric insensitive H2 control problem. In Proceedings of the IFAC World Congress, IFAC, Czech Republic, 2005.

    Google Scholar 

  13. P. Chevrel, M. Yagoubi. A parametric insensitive H2 control design approach. International Journal of Robust and Nonlinear Control, vol. 14, no. 5, pp. 1283–1297, 2004.

    Article  MathSciNet  Google Scholar 

  14. D. J. Bender, A. J. Laub, The linear-quadratic optimal regulator for descriptor systems. IEEE Transactions on Automatic Control, vol 32, no. 8, pp. 672–688, 1987.

    Article  MathSciNet  Google Scholar 

  15. J. Y. Ishihara, M. H. Terra, R. M. Sales, The full information and state feedback H2 optimal controllers for descriptor systems. Automatica, vol 39, no. 3, pp. 391–402, 2003.

    Article  MathSciNet  Google Scholar 

  16. V. Ionescu, C. Oara, Generalized continuous-time Riccati theory. Linear Algebra and its Applications, vol 232, pp. 111–130, 1996.

    Article  MathSciNet  Google Scholar 

  17. A. Ferrante, L. Ntogramatzidis, The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control. Automatica, vol 50, no. 4, pp. 1176–1180, 2014.

    Article  MathSciNet  Google Scholar 

  18. J. Choi, R. Nagamune, R. Horowitz. Synthesis of multiple robust controllers for parametric uncertain LTI systems. In Proceedings of American Control Conference, IEEE, Minneapolis, USA, 2006.

    Google Scholar 

  19. W. Hafez, K. Loparo, M. Hashish, E. Rasmy. Sensitivityconstrained controller design for multi-parameter systems. In Proceedings of IASTED International Conference on Applied Control and Identification, Los Angles, USA, 1986.

    MATH  Google Scholar 

  20. K. Takaba, T. Katayama. H2 output feedback control for descriptor systems. Automatica, vol. 34, no. 7, pp. 841–850, 1998.

    Article  MathSciNet  Google Scholar 

  21. A. I. Lure. Some non-linear Problems in the Theory of Automatic Control: Nekotorye Nelineinye Zadachi Teorii Avtomaticheskogo Regulirovaniya, H. M. Stationery, 1957.

    Google Scholar 

  22. T. Reis, Lur’e equations and even matrix pencils. Linear Algebra and its Applications, vol 434, no. 1, pp. 152–173, 2011.

    Article  MathSciNet  Google Scholar 

  23. J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation. IEEE Transactions on Automatic Control, vol 16, no. 6, pp. 621–634, 1971.

    Article  MathSciNet  Google Scholar 

  24. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory, Philadelphia, USA: SIAM, 1994.

    Book  Google Scholar 

  25. G. Calafiore, F. Dabbene, R. Tempo. Radial and uniform distributions in vector and matrix spaces for probabilistic robustness. Topics in Control and its Applications: A Tribute to Edward J. Davison, Springer, London, UK, pp. 17–31, 1999.

    Chapter  Google Scholar 

  26. R. C. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micromachine and Human Science, IEEE, Nagoya, Japan, pp. 39–43, 1995.

    Chapter  Google Scholar 

  27. I. C. Trelea, The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, vol 85, no. 6, pp. 317–325, 2003.

    Article  MathSciNet  Google Scholar 

  28. F. van den Bergh, A. P. Engelbrecht. A new locally convergent particle swarm optimizer. In Proceedings of 2002 IEEE Conference on Systems, Man and cybernetics, IEEE, Hammamet, Tunisia, 2002.

    Google Scholar 

  29. J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of 2004 IEEE International Symposium on Computer Aided Control Systems Design, IEEE, Taipei, China, 2004.

    Google Scholar 

  30. J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, vol 11, no. 1–4, pp. 625–653, 1999.

    Article  MathSciNet  Google Scholar 

  31. F. Gay, P. De Larminat. Robust vehicle dynamics control under cornering stiffness uncertainties with insensitive H2 theory. In Proceedings of the 4th World Multiconference on Circuits, Systems, Communications, Computers, CSCC, Vouliagmeni, Greece, 2000.

    Google Scholar 

  32. J. Vojtesek, P. Dostal. Optimal choice of weighting factors in adaptive linear quadratic control. International Journal of Automation and Computing, vol 11, no. 3, pp. 241–248, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Yagoubi.

Additional information

Recommended by Associate Editor Victor Becerra

Mohamed Yagoubi received M. Sc. degree in automatic control engineering from the Institut National Polytechnique de Grenoble (INPG), France in 1999, and the Ph.D. degree in automatic control from Ecole Centrale de Nantes, France in 2003. In 2004, he was a faculty member at Mines Nantes, France. Currently, he is an associate professor in the Department of Automatic Control, Production and Computer Science at Mines Nantes, France. He has published about 100 refereed journal and conference papers.

His research interests include robust control, LPV systems, descriptor systems, automotive systems, and control theory in general. He is a member of IEEE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagoubi, M. A Linear Quadratic Controller Design Incorporating a Parametric Sensitivity Constraint. Int. J. Autom. Comput. 16, 553–562 (2019). https://doi.org/10.1007/s11633-016-1048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-016-1048-5

Keywords

Navigation