Skip to main content
Log in

Analysis of the most likely regions of stability of an NCS and design of the corresponding event-driven controller

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

In this paper, some issues related to design and analysis of real networked control systems (NCS) under the focus of the most likely region of stability are addressed. Such a system is cumbersome due to its inherent variable time delays, ranging from microseconds to hours. To show the influence of such huge variations in the control performance, a laboratory-scale luminosity system has been setup using the Internet as part of the control loop with dominant time constant in the order of milliseconds. Proportional and integral (PI) control strategies with and without explicit compensation for the time-delay variations were implemented using an event-driven controller. Using the well-known Monte Carlo method and subsequent analyses of time responses, it has been possible to identify the most likely region of stability. Some experimental results show the influence of the statistical parameters of the delays on the determination of the most likely regions of stability of the NCS and how these can be used in assessment and redesign of the control system. The experiments show that much larger delays than one sample period can be supported by real NCSs without becoming unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. H. Ge, F. W. Yang, Q. L. Han. Distributed networked control systems: A brief overview. Information Sciences, vol. 380, 117–131, 2017. DOI: 10.1016/j.ins.2015.07.047.

    Article  Google Scholar 

  2. X. M. Zhang, Q. L. Han, X. H. Yu. Survey on recent advances in networked control systems. IEEE Transactions on Industrial Informatics, vol. 12, no. 5, 1740–1752, 2016. DOI: 10.1109/TII.2015.2506545.

    Article  Google Scholar 

  3. A. Kheirkhah, D. Aschenbrenner, M. Fritscher. F. Sittner, K. Schilling. Networked control systems with application in the industrial tele-robotics. IFAC-PapersOn-Line, vol. 48, no. 10, 147–152, 2015. DOI: 10.1016/j.ifacol.2015.08.123.

    Article  Google Scholar 

  4. J. B. Qiu, H. J. Gao, M. Y. Chow. Networked control and industrial applications. IEEE Transactions on Industrial Electronics, vol. 63, no. 2, 1203–1206, 2016. DOI: 10.1109/TIE.2015.2506544.

    Article  Google Scholar 

  5. K. Y. Liang, S. van de Hoef, H. Terelius, V. Turri, B. Besselink, J. Mårtensson, K. H. Johansson. Networked control challenges in collaborative road freight transport. European Journal of Control, vol. 30, 2–14, 2016. DOI: 10.1016/j.ejcon.2016.04.008.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Peng, J. Zhang. Event-triggered output-feedback H∞ control for networked control systems with time-varying sampling. IET Control Theory & Applications, vol. 9, no. 9, 1384–1391, 2015. DOI: 10.1049/iet-cta.2014.0876.

    Article  MathSciNet  Google Scholar 

  7. S. Dey, A. Chiuso, L. Schenato. Remote estimation with noisy measurements subject to packet loss and quantization noise. IEEE Transactions on Control of Network Systems, vol. 1, no. 3, 204–217, 2014. DOI: 10.1109/TCNS.2014.2337961.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Okano, H. Ishii. Stabilization of uncertain systems with finite data rates and markovian packet losses. IEEE Transactions on Control of Network Systems, vol. 1, no. 4, 298–307, 2014. DOI: 10.1109/TCNS.2014.2338572.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Nourian, A. S. Leong, S. Dey, D. E. Quevedo. An optimal transmission strategy for Kalman filtering over packet dropping links with imperfect acknowledgements. IEEE Transactions on Control of Network Systems, vol. 1, no. 3, 259–271, 2014. DOI: 10.1109/TCNS.2014.2337975.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Peng, Q. L. Han. On designing a novel self-triggered sampling scheme for networked control systems with data losses and communication delays. IEEE Transactions on Industrial Electronics, vol. 63, no. 2, 1239–1248, 2016. DOI: 10.1109/TIE.2015.2504044.

    Article  Google Scholar 

  11. M. Y. Zhao, H. P. Liu, Z. J. Li, D. H. Sun. Fault tolerant control for networked control systems with packet loss and time delay. International Journal of Automation and Computing, vol. 8, no. 2, 244–253, 2011. DOI: 10.1007/s11633-011-0579-z.

    Article  Google Scholar 

  12. C. Latrach, M. Kchaou, A. Rabhi, A. El Hajjaji. Decentralized networked control system design using Takagi-Sugeno (TS) fuzzy approach. International Journal of Automation and Computing, vol. 12, no. 2, 125–133, 2015. DOI: 10.1007/s11633-015-0879-9.

    Article  Google Scholar 

  13. C. Peng, T. C. Yang. Event-triggered communication and H∞ control co-design for networked control systems. Automatica, vol. 49, no. 5, 1326–1332, 2013. DOI: 10.1016/j.automatica.2013.01.038.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. G. Cea, G. C. Goodwin. Stabilization of systems over bit-rate-constrained networked control architectures. IEEE Transactions on Industrial Informatics, vol. 9, no. 1, 357–364, 2013. DOI: 10.1109/TII.2012.2217976.

    Article  Google Scholar 

  15. L. X. Zhang, H. J. Gao, O. Network-induced constraints in networked control systems—a survey. IEEE Transac-tions on Industrial Informatics, vol. 9, no. 1, 403–416, 2013. DOI: 10.1109/TII.2012.2219540.

    Article  MathSciNet  Google Scholar 

  16. Y. Q. Xia, Y. L. Gao, L. P. Yan, M. Y. Fu. Recent progress in networked control systems—a survey. International Journal of Automation and Computing, vol. 12, no. 4, 343–367, 2015. DOI: 10.1007/s11633-015-0894-x.

    Article  Google Scholar 

  17. A. P. Batista, F. G. Jota. On the effects of time delay variations in the design of networked control system. International Journal of Systems, Control and Communications, vol. 5, no. 2, 120–139, 2013. DOI: 10.1504/ IJSCC.2013.055981.

    Article  Google Scholar 

  18. H. B. Song, G. P. Liu, L. Yu. Networked predictive control of uncertain systems with multiple feedback channels. IEEE Transactions on Industrial Electronics, vol. 60, no. 11, 5228–5238, 2013. DOI: 10.1109/TIE.2012.2225398.

    Article  Google Scholar 

  19. Y. P. Zhang, P. Cofie, A. N. Ajuzie, J. Zhang, C. M. Akujuobi. Real-time random delay compensation with prediction-based digital redesign. ISA Transactions, vol. 50, no. 2, 207–212, 2011. DOI: 10.1016/j.isatra.2010.11.009.

    Article  Google Scholar 

  20. H. Zhang, Y. Shi, M. X. Liu. H∞ step tracking control for networked discrete-time nonlinear systems with integral and predictive actions. IEEE Transactions on Industrial Informatics, vol. 9, no. 1, 337–345, 2013. DOI: 10.1109/TII.2012.2225434.

    Article  Google Scholar 

  21. G. Franzè, F. Tedesco. Networked control systems: A polynomial receding horizon approach. IEEE Transactions on Control of Network Systems, vol. 1, no. 4, 318–327, 2014. DOI: 10.1109/TCNS.2014.2357502.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. N. Yang, G. P. Liu, P. Shi, C. Thomas, M. V. Basin. Predictive output feedback control for networked control systems. IEEE Transactions on Industrial Electronics, vol. 61, no. 1, 512–520, 2014. DOI: 10.1109/TIE.2013.2248339.

    Article  Google Scholar 

  23. E. C. Martins, F. G. Jota. Design of networked control systems with explicit compensation for time-delay variations. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 3, 308–318, 2010. DOI: 10.1109/TSMCC.2009.2036149.

    Article  Google Scholar 

  24. A. Baños, F. Perez, J. Cervera. Network-based reset control systems with time-varying delays. IEEE Transactions on Industrial Informatics, vol. 10, no. 1, 514–522, 2014. DOI: 10.1109/TII.2013.2273434.

    Article  Google Scholar 

  25. H. Bénitez-Pérez, J. Ortega-Arjona, J. A. Rojas-Vargas, A. Durán-Chavesti. Design of a fuzzy networked control systems. Priority exchange scheduling algorithm. International Journal of Computers Communications & Control, vol. 11, no. 2, 179–193, 2016.

    Article  Google Scholar 

  26. J. B. Qiu, H. J. Gao, S. X. Ding. Recent advances on fuzzy-model-based nonlinear networked control systems: A survey. IEEE Transactions on Industrial Electronics, vol. 63, no. 2, 1207–1217, 2016. DOI: 10.1109/TIE.2015.2504351.

    Article  Google Scholar 

  27. S. Bonala, B. Subudhi, S. Ghosh. On delay robustness improvement using digital Smith predictor for networked control systems. European Journal of Control, vol. 34, 59–65, 2017. DOI: 10.1016/j.ejcon.2017.01.001.

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. D. Tian, X. W. Gao, B. L. Gong, T. Shi. Time-delay compensation method for networked control system based on time-delay prediction and implicit PIGPC. International Journal of Automation and Computing, vol. 12, no. 6, 648–656, 2015. DOI: 10.1007/s11633-015-0897-7.

    Article  Google Scholar 

  29. L. Dritsas, A. Tzes. Robust stability analysis of networked systems with varying delays. International Journal of Control, vol. 82, no. 12, 2347–2355, 2009. DOI: 10.1080/00207170903061705.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. P. W. H. Heemels, N. van de Wouw, R. H. Gielen, M. C. F. Donkers, L. Hetel, S. Olaru, M. Lazar, J. Daafouz, S. Niculescu. Comparison of overapproximation methods for stability analysis of networked control systems. In Proceedings of the 13rd ACM International Conference on Hybrid Systems: Computation and Control, ACM, Stockholm, Sweden, pp. 181–190, 2010. DOI: 10.1145/1755952.1755979.

    Google Scholar 

  31. M. B. G. Cloosterman, N. van de Wouw, W. P. M. H. Heemels, H. Nijmeijer. Stability of networked control systems with uncertain time-varying delays. IEEE Transactions on Automatic Control, vol. 54, no. 7, 1575–1580, 2009. DOI: 10.1109/TAC.2009.2015543.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. J. Gao, T. W. Chen, J. Lam. A new delay system approach to network-based control. Automatica, vol. 44, no. 1, 39–52, 2008. DOI: 10.1016/j.automatica.2007.04.020.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Tipsuwan, M. Y. Chow. Control methodologies in networked control systems. Control Engineering Practice, vol. 11, no. 10, 1099–1111, 2003. DOI: 10.1016/S0967-0661(03)00036-4.

    Article  Google Scholar 

  34. A. A. Khan, D. M. Tilbury, J. R. Moyne. Favorable effect of time delays on tracking performance of type-I control systems. IET Control Theory & Applications, vol. 2, no. 3, 210–218, 2008.

    Article  Google Scholar 

  35. M. Posthumus-Cloosterman. Control over Communication Networks: Modeling, Analysis, and Synthesis. Ph. D. dissertation, Technische Universiteit Eindhoven, Nether-lands, 2008.

    Google Scholar 

  36. A. Seuret. Stability analysis of networked control systems with asynchronous sampling and input delay. In Proceedings of 2011 American Control Conference, IEEE, San Francisco, USA, pp. 533–538, 2011. DOI: 10.1109/ ACC.2011.5990854.

    Chapter  Google Scholar 

  37. A. Ray, Y. Halevi. Integrated communication and control systems: Part II—Design considerations. Journal of Dynamic Systems, Measurement, and Control, vol. 110, no. 4, 374–381, 1988. DOI: 10.1115/1.3152699.

    Article  Google Scholar 

  38. Y. Q. Xia, J. J. Yan, P. Shi, M. Y. Fu. Stability analysis of discrete-time systems with quantized feedback and measurements. IEEE Transactions on Industrial Informatics, vol. 9, no. 1, 313–324, 2013. DOI: 10.1109/TII.2012.2218113.

    Article  Google Scholar 

  39. M. Moarref, L. Rodrigues. Piecewise affine networked control systems. IEEE Transactions on Control of Network Systems, vol. 3, no. 2, 173–181, 2016. DOI: 10.1109/TCNS.2015.2428452.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Zhang, Q. G. Wang, L. Yu, Q. K. Shao. H∞ filtering for networked systems with multiple time-varying transmissions and random packet dropouts. IEEE Transactions on Industrial Informatics, vol. 9, no. 3, 1705–1716, 2013. DOI: 10.1109/TII.2012.2232674.

    Article  Google Scholar 

  41. X. He, Z. D. Wang, X. F. Wang, D. H. Zhou. Networked strong tracking filtering with multiple packet dropouts: Algorithms and applications. IEEE Transactions on Industrial Electronics, vol. 61, no. 3, 1454–1463, 2014. DOI: 10.1109/TIE.2013.2261038.

    Article  Google Scholar 

  42. Y. L. Wang, G. H. Yang. Time delay and packet dropout compensation for networked control systems: A linear estimation method. International Journal of Control, vol. 83, no. 1, 115–124, 2010. DOI: 10.1080/00207170903104174.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. N. Li, Q. L. Zhang, M. Cai. Modelling and robust stability of networked control systems with packet reordering and long delay. International Journal of Control, vol. 82, no. 10, 1773–1785, 2009. DOI: 10.1080/00207170902729898.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. P. Batista, F. G. Jota. Effects of time delay statistical parameters on the most likely regions of stability in an NCS. Control Engineering and Applied Informatics, vol. 16, no. 1, 3–11, 2014.

    Google Scholar 

  45. F. G. Jota, P. R. S. Jota, E. C. Nobre. Method and Device for Measuring and Monitoring, WO/2009/033246, 2009.

    Google Scholar 

  46. C. D. Murta, P. R. Torres Jr., P. Mohapatra. QRPp1-4: Characterizing quality of time and topology in a time synchronization network. In Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA, pp. 1–5, 2006.

    Google Scholar 

  47. D. Ruppert. Statistics and finance: An introduction. Journal of the American Statistical Association, vol. 101, no. 474, 849–850, 2004. DOI: 10.1007/978-1-4419-6876-0.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Batista.

Additional information

This work was supported by the Energy Utility Company of Minas Gerais (CEMIG)

Recommended by Associate Editor Yuan-Qing Xia

Ana Paula Batista received the B. Eng. degree in electrical industrial engineering from the Federal Center of Technological Education (CEFET-MG), M. Eng., Brazil in 2004, the M. Eng. degree in control systems from the Federal University of Mi-nas Gerais (UFMG), Brazil in 2006, and the Ph.D. degree from the Federal University of Minas Gerais (UFMG), Brazil in 2014. She is cur-rently a professor with Department of Electrical Engineering, CEFET-MG.

Her research interests include networked control systems, monitoring and control systems, and energy efficiency.

Fábio Gonçalves Jota received the B. Eng. degree in electronics engineering and telecommunications from the Pontifical Catholic University of Minas Gerais (PUC/MG), Brazil in 1978, the M. Eng. degree from the Polytechnic School, University of São Paulo, São Paulo, in 1982, and the Ph.D. degree from the University of Oxford, UK in 1987. He was postdoctoral fellow with the University of Newcastle, Australia in 1997. He was the coordinator with the Graduate Program in Electrical Engineering and the Director with the Centre for Research and Development in Electrical Engineering, both UFMG, in 1994 and 1995. From 1999 to 2002, he was the coordinator with the undergraduate course in control and automation Engineering, UFMG. He is now a retired professor of control, automation and instrumentation from Federal University of Minas Gerais, Brazil.

His research interests include industrial control and instrumentation, adaptive control, networked control systems, monit-oring and control systems for smart grid, energy efficiency and juridical aspects of the automatic control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, A.P., Jota, F.G. Analysis of the most likely regions of stability of an NCS and design of the corresponding event-driven controller. Int. J. Autom. Comput. 15, 39–51 (2018). https://doi.org/10.1007/s11633-017-1099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-017-1099-2

Keywords

Navigation