Skip to main content
Log in

A Hybrid Time Frequency Response and Fuzzy Decision Tree for Non-stationary Signal Analysis and Pattern Recognition

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

A Fourier kernel based time-frequency transform is a proven candidate for non-stationary signal analysis and pattern recognition because of its ability to predict time localized spectrum and global phase reference characteristics. However, it suffers from heavy computational overhead and large execution time. The paper, therefore, uses a novel fast discrete sparse S-transform (SST) suitable for extracting time frequency response to monitor non-stationary signal parameters, which can be ultimately used for disturbance detection, and their pattern classification. From the sparse S-transform matrix, some relevant features have been extracted which are used to distinguish among different non-stationary signals by a fuzzy decision tree based classifier. This algorithm is robust under noisy conditions. Various power quality as well as chirp signals have been simulated and tested with the proposed technique in noisy conditions as well. Some real time mechanical faulty signals have been collected to demonstrate the efficiency of the proposed algorithm. All the simulation results imply that the proposed technique is very much efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Eldar, P. Sidorenko, D. G. Mixon, S. Barel, O. Cohen. Sparse phase retrieval from short-time Fourier measurements. IEEE Signal Processing Letters, vol. 22, no. 5, pp. 638–642, 2015. DOI: https://doi.org/10.1109/LSP.2014.2364225.

    Article  Google Scholar 

  2. L. B. Almeida. The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 3084–3091, 1994. DOI: https://doi.org/10.1109/78.330368.

    Article  Google Scholar 

  3. A. R. Abdullah, A. Z. Sha’ameri, M. S. Norhashimah. Power quality analysis using spectrogram and gabor transformation. In Proceedings of Asia-Pacific Conference on Applied Electromagnetics, IEEE, Melaka, Malaysia, pp. 1–5, 2007. DOI: https://doi.org/10.1109/APACE.2007.4603964.

    Google Scholar 

  4. S. H. Cho, G. Jang, S. H. Kwon. Time-frequency analysis of power-quality disturbances via the Gabor–Wigner transform. IEEE Transactions on Power Delivery, vol. 25, no. 1, pp. 494–499, 2010. DOI: https://doi.org/10.1109/TPWRD.2009.2034832.

    Article  Google Scholar 

  5. S. J. Huang, C. L. Huang, C. T. Hsieh. Application of Gabor transform technique to supervise power system transient harmonics. IEE Proceedings-Generation, Transmission and Distribution, vol. 143, no. 5, pp. 461–466, 1996. DOI: https://doi.org/10.1049/ip-gtd:19960534.

    Article  Google Scholar 

  6. L. Tao, S. Z. Yan, W. Zhang. Time-frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform. Mechanical Systems and Signal Processing, vol. 75, pp. 228–244, 2016. DOI: https://doi.org/10.1016/j.ymssp.2015.12.015.

    Article  Google Scholar 

  7. P. S. Wright. Short-time Fourier transforms and Wigner-Ville distributions applied to the calibration of power frequency harmonic analyzers. IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 2, pp. 475–478, 1999. DOI: https://doi.org/10.1109/19.769633.

    Article  Google Scholar 

  8. J. H. Lee, J. Kim, H. J. Kim. Development of enhanced Wigner-Ville distribution function. Mechanical Systems and Signal Processing, vol. 15, no. 2, pp. 367–398, 2001. DOI: https://doi.org/10.1006/mssp.2000.1365.

    Article  MathSciNet  Google Scholar 

  9. A. R. B. Abdullah, A. Z. B. Sha’ameri, B. J. Auzani. Classification of power quality signals using smooth-windowed Wigner-Ville distribution. In Proceedings of International Conference on Electrical Machines and Systems, IEEE, Incheon, South Korea, pp. 1981–1985, 2010.

    Google Scholar 

  10. H. He, J. A. Starzyk. A self-organizing learning array system for power quality classification based on wavelet transform. IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 286–295, 2006. DOI: https://doi.org/10.1109/TPWRD.2005.852392.

    Article  Google Scholar 

  11. S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, S. C. Bhatt. Characterization of distribution power quality events with Fourier and wavelet transforms. IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 247–254, 2000. DOI: https://doi.org/10.1109/61.847259.

    Article  Google Scholar 

  12. R. Q. Yan, R. X. Gao, X. F. Chen. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, vol. 96, pp. 1–15, 2014. DOI: https://doi.org/10.1016/j.sigpro.2013.04.015.

    Article  Google Scholar 

  13. D. De Yong, S. Bhowmik, F. Magnago. An effective power quality classifier using wavelet transform and support vector machines. Expert Systems with Applications, vol. 42, no. 15–16, pp. 6075–6081, 2015. DOI: https://doi.org/10.1016/j.eswa.2015.04.002.

    Article  Google Scholar 

  14. Z. K. Peng, P. W. Tse, F. L. Chu. An improved Hilbert-Huang transform and its application in vibration signal analysis. Journal of Sound and Vibration, vol. 286, no. 1–2, pp. 187–205, 2005. DOI: https://doi.org/10.1016/j.jsv.2004.10.005.

    Article  Google Scholar 

  15. J. H. Yan, L. Lu. Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis. Signal Processing, vol. 98, pp. 74–87, 2014. DOI: https://doi.org/10.1016/j.sigpro.2013.11.012.

    Article  Google Scholar 

  16. P. K. Dash, B. K. Panigrahi, G. Panda. Power quality analysis using S-transform. IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 406–411, 2003. DOI: https://doi.org/10.1109/TPWRD.2003.809616.

    Article  Google Scholar 

  17. P. K. Dash, B. K. Panigrahi, D. K. Sahoo, G. Panda. Power quality disturbance data compression, detection, and classification using integrated spline wavelet and Stransform. IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 595–600, 2003. DOI: https://doi.org/10.1109/TPWRD.2002.803824.

    Article  Google Scholar 

  18. O. P. Mahela, A. G. Shaik. Recognition of power quality disturbances using S-transform based ruled decision tree and fuzzy C-means clustering classifiers. Applied Soft Computing, vol. 59, pp. 243–257, 2017. DOI: https://doi.org/10.1016/j.asoc.2017.05.061.

    Article  Google Scholar 

  19. R. Kumar, B. Singh, D. T. Shahani, A. Chandra, K. Al-Haddad. Recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree. IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1249–1258, 2015. DOI: https://doi.org/10.1109/TIA.2014.2356639.

    Article  Google Scholar 

  20. O. P. Mahela, A. G. Shaik, N. Gupta. A critical review of detection and classification of power quality events. Renewable and Sustainable Energy Reviews, vol. 41, pp. 495–505, 2015. DOI: https://doi.org/10.1016/j.rser.2014.08.070.

    Article  Google Scholar 

  21. H. S. Behera, P. K. Dash, B. Biswal. Power quality time series data mining using S-transform and fuzzy expert system. Applied Soft Computing, vol. 10, no. 3, pp. 945–955, 2010. DOI: https://doi.org/10.1016/j.asoc.2009.10.013.

    Article  Google Scholar 

  22. J. B. V. Reddy, P. K. Dash, R. Samantaray, A. K. Moharana. Fast tracking of power quality disturbance signals using an optimized unscented filter. IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 12, pp. 3943–3952, 2009. DOI: https://doi.org/10.1109/TIM.2009.2020835.

    Article  Google Scholar 

  23. X. Ouyang, M. G. Amin. Short-time Fourier transform receiver for nonstationary interference excision in direct sequence spread spectrum communications. IEEE Transactions on Signal Processing, vol. 49, no. 4, pp. 851–863, 2001. DOI: https://doi.org/10.1109/78.912929.

    Article  Google Scholar 

  24. M. Analysis of nonstationary power-quality waveforms using iterative Hilbert Huang transform and SAX algorithm. IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2134–2144, 2013. DOI: https://doi.org/10.1109/TPWRD.2013.2264948.

  25. Y. Huang, Y. Q. Liu, Z. P. Hong. Detection and location of power quality disturbances based on mathematical morphology and Hilbert-Huang transform. In Proceedings of the 9th International Conference on Electronic Measurement & Instruments, IEEE, Beijing, China, 2000. DOI: https://doi.org/10.1109/ICEMI.2009.5274596.

    Google Scholar 

  26. S. Santoso, E. J. Powers, W. M. Grady, A. C. Parsons. Power quality disturbance waveform recognition using wavelet-based neural classifier. I. Theoretical foundation. IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 222–228, 2000. DOI: https://doi.org/10.1109/61.847255.

    Article  Google Scholar 

  27. M. Biswal, P. K. Dash. Detection and characterization of multiple power quality disturbances with a fast Stransform and decision tree based classifier. Digital Signal Processing, vol. 23, no. 4, pp. 1071–1083, 2013. DOI: https://doi.org/10.1016/j.dsp.2013.02.012.

    Article  MathSciNet  Google Scholar 

  28. P. K. Dash, S. Das, J. Moirangthem. Distance protection of shunt compensated transmission line using a sparse Stransform. IET Generation, Transmission & Distribution, vol. 9, no. 12, pp. 1264–1274, 2015. DOI: https://doi.org/10.1049/iet-gtd.2014.1002.

    Article  Google Scholar 

  29. M. V. Chilukuri, P. K. Dash. Multiresolution S-transform-based fuzzy recognition system for power quality events. IEEE Transactions on Power Delivery, vol. 19, no. 1, pp. 323–330, 2004. DOI: https://doi.org/10.1109/TPWRD.2003.820180.

    Article  Google Scholar 

  30. R. A. Brown, R. Frayne. A fast discrete S-transform for biomedical signal processing. In Proceedings of the 30th Annual International Conference of IEEE Engineering in Medicine and Biology Society, IEEE, Vancouver, Canada, pp. 2586–2589, 2008. DOI: https://doi.org/10.1109/IEMBS.2008.4649729.

    Google Scholar 

  31. R. A. Brown, M. L. Lauzon, R. Frayne. A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous S-transform spectrum nonredundantly. IEEE Transactions on Signal Processing, vol. 58, no. 1, pp. 281–290, 2010. DOI: https://doi.org/10.1109/TSP.2009.2028972.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Cortes, V. Vapnik. Support-vector networks. Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. DOI: https://doi.org/10.1007/BF00994018.

    MATH  Google Scholar 

  33. J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999. DOI: https://doi.org/10.1023/A:1018628609742.

    Article  Google Scholar 

  34. P. Cross, X. D. Ma. Model-based and fuzzy logic approaches to condition monitoring of operational wind turbines. International Journal of Automation and Computing, vol. 12, no. 1, pp. 25–34, 2015. DOI: https://doi.org/10.1007/s11633-014-0863-9.

    Article  Google Scholar 

  35. B. Biswal, P. K. Dash, B. K. Panigrahi. Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization. IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 212–220, 2009. DOI: https://doi.org/10.1109/TIE.2008.928111.

    Article  Google Scholar 

  36. F. Hoffmann. Combining boosting and evolutionary algorithms for learning of fuzzy classification rules. Fuzzy Sets and Systems, vol. 141, no. 1, pp. 47–58, 2004. DOI: https://doi.org/10.1016/S0165-0114(03)00113-1.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Seera, C. P. Lim, C. K. Loo, H. Singh. Power quality analysis using a hybrid model of the fuzzy min-max neural network and clustering tree. IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 12, pp. 2760–2767, 2016. DOI: https://doi.org/10.1109/TNNLS.2015.2502955.

    Article  Google Scholar 

  38. S. Khokhar, A. Asuhaimi B. Mohd Zin, A. S. B. Mokhtar, M. Pesaran. A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renewable and Sustainable Energy Reviews, vol. 51, pp. 1650–1663, 2015. DOI: https://doi.org/10.1016/j.rser.2015.07.068.

    Article  Google Scholar 

  39. S. Chakravarty, P. K. Dash. A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices. Applied Soft Computing, vol. 12, no. 2, pp. 931–941, 2012. DOI: https://doi.org/10.1016/j.asoc.2011.09.013.

    Article  Google Scholar 

  40. Y. Wang, X. X. Zhu. A robust design of hybrid fuzzy controller with fuzzy decision tree for autonomous intelligent parking system. In Proceedings of American Control Conference, IEEE, Portland, USA, 2014. DOI: https://doi.org/10.1109/ACC.2014.6859439.

    Google Scholar 

  41. Y. Wang, X. X. Zhu. Hybrid fuzzy logic controller for optimized autonomous parking. In Proceedings of American Control Conference, IEEE, Washington DC, USA, 2013. DOI: https://doi.org/10.1109/ACC.2013.6579834.

    Google Scholar 

  42. Y. Wang, X. X. Zhu. Design and implementation of an integrated multi-functional autonomous parking system with fuzzy logic controller. In Proceedings of American Control Conference, IEEE, Montreal, Canada, 2012. DOI: https://doi.org/10.1109/ACC.2012.6315356.

    Google Scholar 

  43. S. R. Safavian, D. Landgrebe. A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 660–674, 1991. DOI: https://doi.org/10.1109/21.97458.

    Article  MathSciNet  Google Scholar 

  44. C. X. Dou, T. Gui, Y. F. Bi, J. Z. Yang, X. G. Li. Assessment of power quality based on D-S evidence theory. International Journal of Automation and Computing, vol. 11, no. 6, pp. 635–643, 2014. DOI: https://doi.org/10.1007/s11633-014-0837-y.

    Article  Google Scholar 

  45. L. F. Mendonca, S. M. Vieira, J. M. C. Sousa. Decision tree search methods in fuzzy modeling and classification. International Journal of Approximate Reasoning, vol. 44, no. 2, pp. 106–123, 2007. DOI: https://doi.org/10.1016/j.ijar.2006.07.004.

    Article  MathSciNet  Google Scholar 

  46. C. Z. Janikow. Fuzzy decision trees: Issues and methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 1, pp. 1–14, 1998. DOI: https://doi.org/10.1109/3477.658573.

    Article  Google Scholar 

  47. R. Chassaing. Digital Signal Processing and Applications with the C6713 and C6416 DSK, Hoboken, USA: John Wiley & Sons, 2004.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dash.

Additional information

N. R. Nayak received the B. Eng. in electronics and telecommunication from Utkal University, India in 1992, the M. Eng. degree in communication system engineering from Biju Patnaik University of Technology, India in 2004, and the Ph. D. degree from Siksha “O” Anusandhan University, India in 2017. He is currently the director of Microsys Infotech, India.

His research interests include signal processing, pattern recognition and classification.

P. K. Dash received the M. Eng. degree in electrical engineering from Indian Institute of Science, India in 1964, the Ph. D. degree in electrical engineering from the Sambalpur University, India in 1972, and the D. Sc. degree in electrical engineering from the Utkal University, India in 2003.

He is currently director of research in the Multidisciplinary Research Cell of the Siksha “O” Anusandhan University, India. He has published more than 500 papers in international journals and conferences.

His research interests include renewable energy, micro and smart grid, machine intelligence, signal processing and control, power quality.

R. Bisoi received the M. Eng. degree in computer application from North Orissa University, India in 2011, and the Ph. D. degrees in computer engineering from Siksha “O” anusandhan University, India 2015. She is currently working as a research officer in the Multidisciplinary Research Cell of Siksha “O” Anusandhan University, India.

She has published 25 papers in international journals and conferences.

Her research interests include computing software, data mining, machine intelligence and bioinformatics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, N.R., Dash, P.K. & Bisoi, R. A Hybrid Time Frequency Response and Fuzzy Decision Tree for Non-stationary Signal Analysis and Pattern Recognition. Int. J. Autom. Comput. 16, 398–412 (2019). https://doi.org/10.1007/s11633-018-1113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-018-1113-3

Keywords

Navigation