Abstract
With the advancing of industrialization and the advent of the information age, intelligent robots play an increasingly important role in intelligent manufacturing, intelligent transportation system, the Internet of things, medical health and intelligent services. Based on working experiences in and reviews on intelligent robot studies both in China and abroad, the authors summarized researches on key and leading technologies related to human-robot collaboration, driverless technology, emotion recognition, brain-computer interface, bionic software robot and cloud platform, big data network, etc. The development trend of intelligent robot was discussed, and reflections on and suggestions to intelligent robot development in China were proposed. The review is not only meant to overview leading technologies of intelligent robot all over the world, but also provide related theories, methods and technical guidance to the technological and industrial development of intelligent robot in China.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ji-Dong Yu, iFLY TEK: 2015 Opens a New Era for Intelligent Robot. https://doi.org/www.techweb.com.cn/news/2015-01-22/2118555.shtml. (in Chinese)
International Federation of Robotics. Industrial Robotics Standardization. [Online], Available: https://doi.org/www.ifr.org/news/ifr-press-release/iso-robotics_standardisation-35/..
International Federation of Robotics. Industrial Robot as Defined by ISO 8373. [Online], Available: https://doi.org/www.ifr.org/industrial-robots.
International Federation of Robotics. Service Robots. [Online], Available: https://doi.org/www.ifr.org/service-robot/.
President Obama Launches Advanced Manufacturing Partnership. https://doi.org/obamawhitehouse.archives.gov/thepress-office/2011/06/24/president-obama-launches-advanced-manufacturing-partnership.
National Robotics Initiative. https://doi.org/www.nasa.gov/robotics/index.html.
A Roadmap for US Robotics-From Internet to Robotics. https://doi.org/jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf.
National Robotics Initiative 2.0: Ubiquitous Collaborative Robots (NRI-2.0). https://doi.org/www.nsf.gov/pubs/2017/nsf17518/nsf17518.htm.
Horizon 2020 Projects. https://doi.org/horizon2020projects.com/.
Robotics and Autonomous Systems Cotents. https://doi.org/connect.innovateuk.org/documents/2903012/16074728/RAS%20UK%20Strategy.
Industrie 4.0. https://doi.org/www.plattform-i40.de/I40/Navigation/EN/Home/home.html.
France Robots Initiatives. https://doi.org/www.entreprises.gouv.fr/files/files/directions-services/secteurs-professionnels/industrie/robotique/france-robots-initiatives.pdf.
Robot Revolution Initiative. https://doi.org/www.jmfrri.gr.jp/english/.
Japan Releases “New Development Strategy of Robot”. https://doi.org/www.most.gov.cn/gnwkjdt/201505/t20150514_119467.htm. (in Chinese)
https://doi.org/elaw.klri.re.kr/eng_mobile/viewer.do?hseq=17399&typepart&key18.
Korean Government Constructs “The Strategy Towards a Robotic Power”. https://doi.org/intl.ce.cn/hqcy/zxdt/201012/21/t20101221_22067889.shtml. (in Chinese)
Speech by Xi Jinping in 17th Academician Conference of Chinese Academy of Sciences and 12th Academician Conference of Chinese Academy of Engineering. https://doi.org/cpc.people.com.cn/n/2014/0610/c64094-25125594.html. (in Chinese)
The Development Plan of Robotic Industry (2016–2020) has been issued. https://doi.org/www.ndrc.gov.cn/zcfb/zcfbghwb/201604/t20160427_799898.html. (in Chinese)
W. T. Wang. Study of end effect of demographic dividend on China economic growth. Finance & Trade Economics, no. 11, pp. 14–20, 2012. (in Chinese)
B. Lu. Global robot market welcomes rapid development in 2011. Robot Technique and Application, no. 4, pp. 10–11, 2012. DOI: 10.3969/j.issn.1004-6437.2012.04. 003. (in Chinese)
EXPO21XX. com online exhibitions. Automation online exhibition. [Online], Available: https://doi.org/www.expo21xx.com/automation21xx.
N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada, A. Rodriguez, J. M. Romano, P. R. Wurman. Analysis and observations from the first amazon picking challenge. IEEE Transactions on Automation Science and Engineering, vol. 15, no. 1, pp. 172–188, 2018. DOI: 10.1109/TASE.2016.2600527.
S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder, M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink, C. Frese, C. Stiller. Team Annie-WAY’s autonomous system for the 2007 DARPA Urban Challenge. Journal of Field Robotics, vol. 25, no. 9, pp. 615–639, 2008. DOI: 10.1002/rob.20252.
S. Y. Feng, E. Whitman, X. Xinjilefu, C. G. Atkeson. Optimization-based full body control for the DARPA robotics challenge. Journal of Field Robotics, vol. 32, no. 2, pp. 293–312, 2015. DOI: 10.1002/rob.21559.
STMD: Centennial Challenges. https://doi.org/www.nasa.gov/directorates/spacetech/centennial_challenges/sample_return_robot/index.html.
The Chinese Institute of Electronics. 2017 China robotic industry development report. [Online], Available: https://doi.org/www.sohu.com/a/191924538_465895, September 14, 2017. (in Chinese)
R. F. Li. Development strategy for China industrial robot. Aeronautical Manufacturing Technology, no. 9, pp. 32–37, 2010. Doi: 10.3969/j.issn.1671-833X.2010.09. 003. (in Chinese)
T. M. Wang, Y. Tao, Y. Chen. Research status and development trends of the service robotic technology. Scient ia Sinica Informationis, vol. 42, no. 9, pp. 1049–1066, 2012. Doi: 10.1360/112012-402. (in Chinese)
Rethink robotics. https://doi.org/www.rethinkrobotics.com/baxter/. (in Chinese)
IRB 14000 YUMI. https://doi.org/new.abb.com/products/robotics/industrial-robots/yumi.
Flexible Coordinated Robot. https://doi.org/www.siasun.com/index.php?m=content&cindex&ashow&catid24&id309. (in Chinese)
Automated warehouse systems from a single source. https://doi.org/www.swisslog.com/en/Solutions/WDS/Fully-Automated-Picking/AutoPiQ-robot-based-Automatedsingle-Item-Pick#.
Mystery Robot Revealed: RoboDynamics Luna Is Fully Programmable Adult-size Personal Robot. https://doi.org/spectrum.ieee.org/automaton/robotics/home-robots/robodynamics-luna-fully-programmable-adult-size-personal-robot.
A. Tapus, A. Peca, A. Aly, C. Pop, L. Jisa, S. Pintea, A. S. Rusu, D. O. David. Children with autism social engagement in interaction with Nao, an imitative robot: A series of single case experiments. Interaction Studies, vol. 13, no. 3, pp. 315–347, 2012. DOI: 10.1075/is.13.3. 01tap.
F. Tanaka, K. Isshiki, F. Takahashi, M. Uekusa, R. Sei, K. Hayashi. Pepper learns together with children: Development of an educational application. In Proceedings of the 15th International Conference on Humanoid Robots, IEEE, Seoul, South Korea, pp. 270–275, 2015. DOI: 10.1109/HUMANOIDS.2015.7363546.
G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori. The iCub humanoid robot: an open platform for research in embodied cognition. In Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, ACM, Gaithersburg, Maryland, USA, pp. 50–56, 2008. DOI: 10.1145/1774674.1774683.
T. Asfour, K. Yokoi, C. S. G. Lee, J. Kuffner. Humanoid robotics. IEEE Robotics & Automation Magazine, vol. 19, no. 1, pp. 108–118, 2012. DOI: 10.1109/MRA.2012. 2186688.
Leading the Future of Service Robot Application: “UU” by CANBOT Appeared at the 2017 World Robot Assembly. https://doi.org/tech.china.com/article/20170824/2017082452338.html. (in Chinese)
Ye Wang of Ninebot Make Affordable Balance Car for Common People. https://doi.org/news.xinhuanet.com/tech/2017-03/15/c1120623740.htm.
PWC. Trends and research directions of medical robotics. [Online], Available: https://doi.org/www.careers.pwchk.com/webmedia/doc/636149907746623129_health-trends-robotics_nov2016.pdf. (in Chinese)
Robotic Surgery. https://doi.org/spinoff.nasa.gov/spinoff2000/hm1.htm.
I. A. M. J. Broeders, J. Ruurda. Robotics revolutionizing surgery: The Intuitive Surgical “Da Vinci” system. Industrial Robot, vol. 28, no. 5, pp. 387–392, 2001. DOI: 10.1108/EUM0000000005845.
U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer, F. Hacker, L. Le-Tien, A. Albu-Schaffer, R. Konietschke, M. Grebenstein, R. Warpup, R. Haslinger, M. Frommberger, G. Hirzinger. The DLR MIRO: A versatile lightweight robot for surgical applications. Industrial Robot, vol. 35, no. 4, pp. 324–336, 2008. DOI: 10.1108/01439910810876427.
ViRob Life in Motion. https://doi.org/www.microbotmedical.com/technology/virob/.
Z. M. Tian, W. S. Lu, T. M. Wang, B. L. Ma, Q. J. Zhao, G. L. Zhang. Application of a robotic telemanipulation system in stereotactic surgery. Stereotactic and Functional Neurosurgery, vol. 86, no. 1, pp. 54–61, 2008. DOI: 10.1159/000110742.
Y. S. Sun, D. M. Wu, Z. J. Du, L. N. Sun. Robot-assisted needle insertion strategies based on liver force model. Robot, vol. 33, no. 1, pp. 66–70, 2001. DOI: 10.3724/SP.J. 1218.2011.00066. (in Chinese)
S. X. Wang, X. F. Wang, J. X. Zhang, X. M. Jiang, J. M. Li. A new auxiliary celiac minimally invasive surgery robot: “MicroHandA”. Robot Technique and Application, no. 4, pp. 17–21, 2011. DOI: 10.3969/j.issn.1004-6437.2011. 04.005. (in Chinese)
Capsule Endoscope. https://doi.org/www.jinshangroup.com/products-19.html. (in Chinese)
L. Zhou, Y. Wang, B. B. Wang, X. Y. Li, Y. Feng. Efficiency evaluation of a robotic navigation system for femoral neck surgery in clinical trials by data envelopment analys is. Beijing Biomedical Engineering, vol. 33, no. 6, pp. 614–619, 2014. DOI: 10.3969/j.issn.1002-3208. 2014.06.11.
H. F. Yang, Z. M. Tian, Y. C. Sun, G. Cui, B. Li, Z. B. Zhang, Y. J. Piao, F. Q. Zhang. Clinical Application of the Sixth Generation Neurosurgical Robot Remebot. Chinese Journal for Clinicians, vol. 45, no. 3, pp. 86–88, 2017. DOI: 10.3969/j.issn.2095-8552.2017.03.030. (in Chinese)
Army Orders Up 315 Recon Scout XT Robots From ReconRobotics. https://doi.org/www.reconrobotics.com/about-us/news/press-releases/army-orders-up-315-recon-scout-xtrobots-from-reconrobotics/.
Zephyr UAV Continues to Break Records on First Authorized Civil Flight. https://doi.org/newatlas.com/zephyr-uavcivil-test-flight/34010/.
GuardianTM S. https://doi.org/www.sarcos.com/products/guardian-s/.
Ocean One Lands on the Moon. https://doi.org/cs.stanford.edu/group/manips/ocean-one.html.
S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. K. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, vol. 40, no. 3, pp. 429 455, 2016. DOI: 10.1007/s10514-015-9479-3.
China Has Developed Rescue Robot width the Ability of Life Detection. https://doi.org/scitech.people.com.cn/GB/10491463.html. (in Chinese)
https://doi.org/www.hrg-srobot.com/. (Robot Automation Equipment) (in Chinese)
Jiaolong Completed Its 38th Travel on the Chinese Ocean. https://doi.org/news.cctv.com/2017/06/24/ARTIo9yqT5G0w7JFHXPfgglh170624.shtml. (in Chinese)
Intel Predicts Autonomous Driving Will Spur New ‘Passenger Economy’ Worth $7 Trillion. https://doi.org/newsroom.intel.com/news-releases/intel-predicts-autonomous-driving-will-spur-new-passenger-economy-worth-7-trillion/.
We Drive Every Day on Public Roads So We can Build A Safer Driver. https://doi.org/waymodoi.org/.com/ontheroad/.
Full Self-Driving Hardware on All Cars. https://doi.org/www.tesla.com/autopilot.
Volvo Is Sticking with Uber to Win the Autonomous driving ‘marathon’. https://doi.org/www.businessinsider.com/volvo-us-ceo-interview-autonomous-cars-china-trump-2017-5.
Uber wanted to revolutionize trucking like it did taxis-but it hasn’t made a dent. https://doi.org/www.businessinsider.com/r-ubers-trucking-ambitions-in-lower-gear-after-ottodeal-2017-6.
Apple’s autonomous car tech is ‘where Google was three years ago’ says someone who has seen it. https://doi.org/www.businessinsider.com/apple-self-driving-car-technologywhere-google-was-three-years-ago-2017-8.
Intel’s $15 Billion Purchase of Mobileye Shakes up Driverless Car Sector. https://doi.org/www.cnbc.com/2017/03/14/intels-15-billion-purchase-of-mobileye-shakes-up-driverlesscar-sector.html.
Behind the Big Apollo Project: Baidu Map Makes Travel Simpler. https://doi.org/news.xinhuanet.com/tech/2017-08/09/c_1121452838.htm. (in Chinese)
The Horizon Compang Established Its Shanghai Autonomous Driving Research Center Accelerating the Completion of Hugo System. https://doi.org/www.sohu.com/a/130884320-560056. (in Chinese)
Z. H. Lin, T. L. Xu. Application of robot technology in logistics industry. Logistics Technology, vol. 31, no. 7, pp. 42–45, 2012. DOI: 10.3969/j.issn.1005-152X.2012.07. 013. (in Chinese)
B. W. Shen, N. B. Yu, J. T. Liu. Intelligent scheduling and path planning of warehouse mobile robots. CAAI Transactions on Intelligent Systems, vol. 9, no. 6, pp. 659–664, 2014. DOI: 10.3969/j.issn.1673-4785.201312048. (in Chinese)
Meet Amazon’s Busiest Employee--the Kiva Robot. https://doi.org/www.cnet.com/news/meet-amazons-busiest-employee-the-kiva-robot/.
https://doi.org/japan.people.com.cn/BIG5/n1/2017/0811/c35421-29465077.html. (Chinese Logistic Robot Geek+ Steps into Japan Market) (in Chinese)
Quicktron Finished B Round Capital Raising of 0.2 Billion RMB, Attracting the First Inverstment from Cainiao. https://doi.org/www.robot-china.com/news/201703/31/40116.html. (in Chinese)
Delivery Sorting Robot: A Cute and Fantastic Robot. https://doi.org/news.cctv.com/2017/04/11/ARTInJry64qjSH8T8V6XCcJY170411.shtml. (in Chinese)
Warehousing and Logistics Robot Shipments Will Reach 620 000 Units Annually by 2021. https://doi.org/www.tractica.com/newsroom/press-releases/warehousing-and-logistics-robot-shipments-will-reach-620000-units-annually-by-2021/.
Amazon Claims First Successful Prime Air Drone Delivery. [Online], Available: https://doi.org/www.tuicool.com/articles/VBVJBrv, December 14, 2016.
YARA and KONGSBERG enter into partnership to build world’s first autonomous and zero emissions ship. https://doi.org/www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/98A8C576AEFC85AFC125811A0037F6C4?OpenDocument.
Robots and Robotic Devices-Collaborative Robots, ISO/TS 15066, 2016.
S. Wolf, G. Hirzinger. A new variable stiffness design: Matching requirements of the next robot generation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Pasadena, USA, pp. 1741–1746, 2008. DOI: 10.1109/ROBOT.2008.4543452.
J. Choi, S. Hong, W. Lee, S. Kang, M. Kim. A robot joint with variable stiffness using leaf springs. IEEE Transactions on Robotics, vol. 27, no. 2, pp. 229–238, 2011. DOI: 10.1109/TRO.2010.2100450.
S. Wolf, O. Eiberger, G. Hirzinger. The DLR FSJ: Energy based design of a variable stiffness joint. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Shanghai, China, pp. 5082–5089, 2011. DOI: 10.1109/ICRA.2011.5980303.
A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, B. Matthias. Safety in human-robot collaborative manufacturing environments: Metrics and control. IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 882–893, 2016. DOI: 10.1109/TASE.2015. 2412256.
M. Zinn, O. Khatib, B. Roth. A new actuation approach for human friendly robot design. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, New Orleans, USA, vol. 1, pp. 249–254, 2004. DOI: 10.1109/ROBOT.2004.1307159.
J. S. Gutmann, M. Fukuchi, M. Fujita. 3D perception and environment map generation for humanoid robot navigation. International Journal of Robotics Research, vol. 27, no. 10, pp. 1117–1134, 2008. DOI: 10.1177/0278364908096316.
A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, G. Metta. Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Transactions on Robotics, vol. 27, no. 3, pp. 389–400, 2011. DOI: 10.1109/TRO.2011.2132930.
A. Fanaei, M. Farrokhi. Robust adaptive neuro-fuzzy controller for hybrid position/force control of robot manipulators in contact with unknown environment. Journal of Intelligent & Fuzzy Systems, vol. 17, no. 2, pp. 125–144, 2006.
H. Masuta, N. Kubota. Information reduction for environment perception of an intelligent robot arm equipped with a 3D range camera. In Proceedings of SICE Annual Conference, IEEE, Taipei, China, pp. 392–397, 2010.
A. J. Davison, I. D. Reid, N. D. Molton, O. Stasse. Mono-SLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007. DOI: 10.1109/TPAMI. 2007.1049.
M. Blösch, S. Weiss, D. Scaramuzza, R. Siegwart. Vision based MAV navigation in unknown and unstructured environments. IEEE In Proceedings of International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 21–28, 2010. DOI: 10.1109/ROBOT.2010. 5509920.
Z. Y. Liu. The Theory of Intelligent Traffic Control and Application, Beijing, China: Science Press, 2003. (in Chinese)
M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. K. Zhang, X. Zhang, J. Zhao, K. Zieba. End to end learning for self-driving cars. arXiv preprint arXiv: 1604. 07316, 2016.
S. Liu. The First Technical Book of Unmanned Driving, Beijing, China: Publishing House of Electronics Industry, 2017. (in Chinese)
R. Olfati-Saber, J. A. Fax, R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007. DOI: 10.1109/JPROC.2006.887293.
G. D. Shi, K. H. Johansson. Multi-agent robust consensus — Part I: Convergence analysis. In Proceeding of the 50th Decision and Control and European Control Conference, IEEE, Orlando, USA, pp. 5744–5749, 2011. DOI: 10.1109/CDC.2011.6160957.
Y. G. Sun, L. Wang, G. M. Xie. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Systems & Control Letters, vol. 57, no. 2, pp. 175–183, 2008. DOI: 10.1016/j. sysconle.2007.08.009.
M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo. Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, vol. 7, no. 1, pp. 1–41, 2013. DOI: 10.1007/s11721-012-0075-2.
H. T. Xue, Y. Y. Ye, L. C. Shen, W. S. Chang. A roadmap of multi-agent system architecture and coordination research. Robot, vol. 23, no. 1, pp. 85–90, 2001. DOI: 10.3321/j.issn:1002-0446.2001.01.017. (in Chinese)
M. Flint, M. Polycarpou, E. Fernandez-Gaucherand. Cooperative control for multiple autonomous UAV’s searching for targets. In Proceeding of the 41st IEEE Conference on Decision and Control, IEEE, Las Vegas, NV, USA, vol. 3, pp. 2823–2828, 2003. DOI: 10.1109/CDC.2002. 1184272.
A. T. Hafez, A. J. Marasco, S. N. Givigi, M. Iskandarani, S. Yousefi, C. A. Rabbath. Solving multi-UAV dynamic encirclement via model predictive control. IEEE Transactions on Control Systems Technology, vol. 23, no. 6, pp. 2251–2265, 2015. DOI: 10.1109/TCST.2015.2411632.
A. L. Yang, W. Naeem, M. R. Fei, L. Liu, X. W. Tu. Multiple robots formation manoeuvring and collision avoidance strategy. International Journal of Automation and Computing, vol. 14, no. 6, pp. 696–705, 2017. DOI: 10. 1007/s11633-016-1030-2.
Y. Zhang, S. L. Luo. Recognizing and expressing affect. Computer Engineering and Applications, vol. 39, no. 33, pp. 98–102, 2003. DOI: 10.3321/j.issn:1002-8331.2003.33. 033. (in Chinese)
M. Merras, S. El Hazzat, A. Saaidi, K. Satori, A. G. Nazih. 3D face reconstruction using images from cameras with varying parameters. International Journal of Automation and Computing, vol. 14, no. 6, pp. 661–671, 2017. DOI: 10.1007/s11633-016-0999-x.
E. Cambria. Affective computing and sentiment analysis. IEEE Intelligent Systems, vol. 31, no. 2, pp. 102–107, 2016. DOI: 10.1109/MIS.2016.31.
A. Bartels, S. Zeki. The neural correlates of maternal and romantic love. NeuroImage, vol. 21, no. 3, pp. 1155–1166, 2004. DOI: 10.1016/j.neuroimage.2003.11.003.
J. Lin, H. Yu, C. Y. Miao, Z. Q. Shen. An affective agent for studying composite emotions. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, ACM, Istanbul, Turkey, pp. 1947–1948, 2015.
Z. H. Zeng, J. L. Tu, B. M. Pianfetti, T. S. Huang. Audio-visual affective expression recognition through multistream fused HMM. IEEE Transactions on Multimedia, vol. 10, no. 4, pp. 570–577, 2008. DOI: 10.1109/TMM. 2008.921737.
S. L. Happy, A. Routray. Automatic facial expression recognition using features of salient facial patches. IEEE Transactions on Affective Computing, vol. 6, no. 1, pp. 1–12, 2015. DOI: 10.1109/TAFFC.2014.2386334.
Z. H. Zeng, M. Pantic, G. I. Roisman, T. S. Huang. A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 1, pp. 39–58, 2009. DOI: 10.1109/TPAMI.2008.52.
G. Santhanam, S. I. Ryu, B. M. Yu, A. Afshar, K. V. Shenoy. A high-performance brain-computer interface. Nature, vol. 442, no. 7099, pp. 195–198, 2006. DOI: 10. 1038/nature04968.
J. Dobson. Remote control of cellular behaviour with magnetic nanoparticles. Nature Nanotechnology, vol. 3, no. 3, pp. 139–143, 2008. DOI: 10.1038/nnano.2008.39.
L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, J. P. Donoghue. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, vol. 485, no. 7398, pp. 372–375, 2012. DOI: 10.1038/nature11076.
M. J. Vansteensel, E. G. M. Pels, M. G. Bleichner, M. P. Branco, T. Denison, Z. V. Freudenburg, P. Gosselaar, S. Leinders, T. H. Ottens, M. A. van den Boom, P. C. van Rijen, E. J. Aarnoutse, N. F. Ramsey. Fully implanted Brain-computer interface in a locked-in patient with ALS. New England Journal of Medicine, vol. 375, no. 21, pp. 2060–2066, 2016. DOI: 10.1056/NEJMoa1608085.
C. E. Bouton, A. Shaikhouni, N. V. Annetta, M. A. Bockbrader, D. A. Friedenberg, D. M. Nielson, G. Sharma, P. B. Sederberg, B. C. Glenn, W. J. Mysiw, A. G. Morgan, M. Deogaonkar, A. R. Rezai. Restoring cortical control of functional movement in a human with quadriplegia. Nature, vol. 533, no. 7602, pp. 247–250, 2016. DOI: 10.1038/nature17435.
F. R. Willett, C. Pandarinath, B. Jarosiewicz, B. A. Murphy, W. D. Memberg, C. H. Blabe, J. Saab, B. L. Walter, J. A. Sweet, J. P. Miller, J. M. Henderson, K. V. Shenoy, J. D. Simeral, L. R. Hochberg, R. F. Kirsch, A. B. Ajiboye. Feedback control policies employed by people using intracortical brain-computer interfaces. Journal of Neural Engineering, vol. 14, no. 1, Article number 016001, 2016. DOI: 10.1088/1741–2560/14/1/016001.
A. B. Ajiboye, F. R. Willett, D. R. Young, W. D. Memberg, B. A. Murphy, J. P. Miller, B. L. Walter, J. A. Sweet, H. A. Hoyen, M. W. Keith, P. H. Peckham, J. D. Simeral, J. P. Donoghue, L. R. Hochberg, R. F. Kirsch. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration. The Lancet, vol. 389, no. 10081, pp. 1821–1830, 2017. DOI: 10.1016/S0140-6736(17)30601-3.
X. J. Zhu, A. B. Goldberg, R. Brachman, T. Dietterich. Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 3, no. 1, pp. 1–130, 2009.
P. Englert, A. Paraschos, M. P. Deisenroth, J. Peters. Probabilistic model-based imitation learning. Adaptive Behavior, vol. 21, no. 5, pp. 388–403, 2013. DOI: 10.1177/1059712313491614.
B. D. Argall, S. Chernova, M. Veloso, B. Browning. A survey of robot learning from demonstration. Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469–483, 2009. DOI: 10.1016/j.robot.2008.10.024.
S. M. Khansari-Zadeh, A. Billard. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957, 2011. DOI: 10.1109/TRO.2011.2159412.
J. Kober, K. Mülling, O. Krömer, C. H. Lampert, B. Schölkopf, J. Peters. Movement Templates for Learning of Hitting and Batting. In Proceedings of International Conference on Robotics and Automation, IEEE, Anchorage, AK, USA, pp. 853–858, 2010. DOI: 10.1109/ROBOT. 2010.5509672.
S. Levine, P. Pastor, A. Krizhevsky, D. Quillen. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. arXiv preprint arXiv: 1603.02199, 2016.
C. Finn, S. Levine. Deep visual foresight for planning robot motion. In Proceedings of International Conference on Robotics and Automation, IEEE, Singapore, pp. 2786–2793, 2017. DOI: 10.1109/ICRA.2017.7989324.
OctopusGripper. https://doi.org/www.festo.com/group/en/cms/12745.htm.
SFG Series Flexible Gripping Jaw. https://doi.org/www.softrobottech.com/. (in Chinese)
T. Ranzani, G. Gerboni, M. Cianchetti, A. Menciassi. A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration & Biomimetics, vol. 10, no. 3, Article number 035008, 2015. DOI: 10.1088/1748-3190/10/3/035008.
M. Luo, W. J. Tao, F. C. Chen, T. K. Khuu, S. Ozel, C. D. Onal. Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake. In Proceedings of International Conference on Technologies for Practical Robot Applications, IEEE, Woburn, USA, 2014. DOI: 10.1109/TePRA.2014.6869154.
R. Deimel, O. Brock. A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research, vol. 35, no. 1–3, pp. 161–185, 2016. DOI: 10.1177/0278364915592961.
M. Rolf, J. J. Steil. Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Vilamoura, Portugal, pp. 3440–3446, 2012. DOI: 10.1109/IROS.2012.6385596.
J. T. Lei, H. Y. Yu, T. M. Wang. Dynamic bending of bionic flexible body driven by pneumatic artificial muscles (PAMs) for spinning gait of quadruped robot. Chinese Journal of Mechanical Engineering, vol. 29, no. 1, pp. 11–20, 2016. DOI: 10.3901/CJME.2015.1016.123.
C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, P. Dario. Soft robot arm inspired by the octopus. Advanced Robotics, vol. 26, no. 7, pp. 709–727, 2012. DOI: 10.1163/156855312X626343.
D. M. Aukes, B. Heyneman, J. Ulmen, H. Stuart, M. R. Cutkosky, S. Kim, P. Garcia, A. Edsinger. Design and testing of a selectively compliant underactuated hand. The International Journal of Robotics Research, vol. 33, no. 5, pp. 721–735, 2014. DOI: 10.1177/0278364913518997.
J. J. Kuffner, S. M. LaValle. Space-filling trees: A new perspective on incremental search for motion planning. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, San Francisco, USA, pp. 2199–2206, 2011. DOI: 10.1109/IROS.2011. 6094740.
G. H. Tian, Y. W. Xu. Cloud robotics: Concept, architectures and key technologies. Journal of Shandong University (Engineering Science) vol. 44, no. 6, pp. 47–54, 2014. DOI: 10.6040/j.issn.1672-3961.0.2014.282. (in Chinese)
M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng. ROS: An opensource robot operating system. ICRA Workshop on Open Source Software, vol. 3, no. 3, 2009.
M. Yuriyama, T. Kushida. Sensor-cloud infrastructure-physical sensor management with virtualized sensors on cloud computing. In Proceedings of the 13th International Conference on Network-Based Information Systems IEEE, Takayama, Japan, pp. 1–8, 2010. DOI: 10.1109/NBiS.2010.32.
S. Nakagawa, N. Igarashi, Y. Tsuchiya, M. Narita, Y. Kato. An implementation of a distributed service framework for cloud-based robot services. In Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society. IEEE, Montreal, Canada, pp. 4148–4153, 2012. DOI: 10.1109/IECON.2012.6389225.
L. Turnbull, B. Samanta. Cloud robotics: Formation control of a multi robot system utilizing cloud infrastructure. In Proceedings of IEEE Southeastcon IEEE, Jacksonville, FL, USA, pp. 1, 2013. DOI: 10.1109/SECON.2013. 6567422.
B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, K. Goldberg. Cloud-based robot grasping with the Google object recognition engine. In Proceedings of International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, pp. 4263–4270, 2013. DOI: 10.1109/ICRA.2013.6631180.
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, vol. 529, no. 7587, pp. 484–489, 2016. DOI: 10.1038/nature16961.
Acknowledgements
This work was supported by the Chinese MIIT Intelligent Manufacturing and New Mode Application “Application of new mode of intelligent manufacturing of Chinese medicine products”. The authors would like to extend heartfelt thanks to Jin-Chang Liu, a researcher from High Technology Research and Development Center, for his nice help and constructive suggestions. The authors′ gratitudes also go to other specialists in the robotic field who have made great contributions to this work, including Tian-Ran Wang, Ba Zhang, He-Gao Cai, Han Ding, Ning Xi, Ze-Xiang Li, Jie Zhao, Min Tan, Tian Huang, Qiang Huang, Li-Ning Sun, Yao-Nao Hou, Cheng-Liang Liu, Ya-Ping Jin, Jian-Da Han, Dao-Kui Qu, Fang Xu, Jing-Tai Liu, Zeng-Guang Hou, Cai-Hua Xiong, Yong-Chun Fang, Xing-Guan Duan, Dian-Sheng Chen, Rong Xiong, Yong- Sheng Ou, et al.
Author information
Authors and Affiliations
Corresponding author
Additional information
Yong Tao received the Ph. D. degree in School of Mechanical Engineering and Automation, Beihang University, China in 2009. Currently, he is an associate professor at Beihang University, China. He has published about 30 refereed journal and conference papers. He also participated in compiling and finishing 5 books in the robotic field. He received Second Prize of Machinery Industry Science and Technology Award, and Second Prize of Jiangsu Science and Technology Progress Award. He received the honorary title of “excellent worker of the Chinese Institute of Electronics” in 2014, and one of the excellent scientific papers of the second China Association for Science and Technology. He is a member of Chinese Institute of Electronics Embedded Systems and Robotics Branch, a member of the robotics Association of the Mechanical Engineering Society.
His research interests include intelligent robot advanced control technology and integrated applications, control of embedded mechanical and electrical integration, intelligent manufacturing development strategy consulting.
Hui Liu received the B. Sc. degree in School of Engineering, Southwest Jiaotong University, China in 2015. He is currently a master student in School of Mechanical Engineering & Automation, Beihang University, China.
His research interests include motion planning and generating based on demonstration, self-learning of grasping and machine vision.
Rights and permissions
About this article
Cite this article
Wang, TM., Tao, Y. & Liu, H. Current Researches and Future Development Trend of Intelligent Robot: A Review. Int. J. Autom. Comput. 15, 525–546 (2018). https://doi.org/10.1007/s11633-018-1115-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11633-018-1115-1