Skip to main content
Log in

Predictive Control Based on Fuzzy Supervisor for PWARX Hybrid Model

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

In this paper, the problem of hybrid model predictive control (HMPC) strategy based on fuzzy supervisor for piecewise autoregressive with exogenous input (PWARX) models is addressed. We first represent the nonlinear behavior of the system with a PWARX model. Then, we transform the obtained PWARX model into a mixed logical dynamic (MLD) model in order to apply the proposed predictive control which is able to stabilize such systems along desired reference trajectories while satisfying operating constraints. Finally, we propose to introduce a fuzzy supervisor allowing the readjustment of the HMPC tuning parameters in order to maintain the desired performance. Simulation and experimental results are presented to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. E. F. Camacho, D. R. Ramirez, L. Limon, D. M. de l. Pena, T. Alamo. Model predictive control techniques for hybrid systems. Annual Reviews in Control, vol. 34, no. 1, pp. 21–31, 2010. Doi: 10.1016/j.arcontrol.2010.02.002.

    Article  Google Scholar 

  2. D. M. Liu, S. Y. Li. Predictive zone control of pressure management for water supply network systems. International Journal of Automation and Computing, vol. 13, no. 6, pp. 607–614, 2016. Doi: 10.1007/s11633–015–0935–5.

    Article  Google Scholar 

  3. M. Taleb, E. Leclercq, D. Lefebvre. Model predictive control for discrete and continuous timed petri nets. International Journal of Automation and Computing, vol. 15, no. 1, pp. 25–38, 2018. Doi: 10.1007/s11633–016–1046–7.

    Article  MATH  Google Scholar 

  4. P. Karelovic, E. Putz, A. Cipriano. A framework for hybrid model predictive control in mineral processing. Control Engineering Practice, vol. 40, pp. 1–12, 2015. DOI: 10.1016/j.conengprac.2015.02.006.

    Google Scholar 

  5. M. Ramasamy, S. S. Narayanan, D. P. Rao. Control of ball mill grinding circuit using model predictive control scheme. Journal of Process Control, vol. 15, no. 3, pp. 273–283, 2005. DOI: 10.1016/j.jprocont.2004.06.006.

    Article  Google Scholar 

  6. X. Q. Sun, C. C. Yuan, Y. F. Cai, S. H. Wang, L. Chen. Model predictive control of an air suspension system with damping multi–mode switching damper based on hybrid model. Mechanical Systems and Signal Processing, vol. 94, pp. 94–110, 2017. DOI: 10.1016/j.ymssp.2017.02.033.

    Google Scholar 

  7. A. G. Parlos, S. Parthasarathy, A. F. Atiya. Neuro–predictive process control using online controller adaptation. IEEE Transactions on Control Systems Technology, vol. 9, no. 5, pp. 741–755, 2001. DOI: 10.1109/87.944469.

    Article  Google Scholar 

  8. M. Xu, S. Y. Li. Practical generalized predictive control with decentralized identification approach to HVAC systems. Energy Conversion and Management, vol. 48, no. 1, pp. 292–299, 2007. DOI: 10.1016/j.enconman.2006.04.012.

    Article  Google Scholar 

  9. B. Liu. Exact controllability of a hybrid system, membrane with strings, on general polygon domains. Journal of Dynamical and Control Systems, vol. 4, no. 1, pp. 29–47, 1998. DOI: 10.1023/A:1022868815952.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Paoletti, A. L. Juloski, G. Ferrari–Trecate, R. Vidal. Identification of hybrid systems a tutorial. European Journal of Control, vol. 13, no. 2–3, pp. 242–260, 2007. DOI: 10.3166/ejc.13.242–260.

    Article  MATH  Google Scholar 

  11. J. N. Lin, R. Unbehauen. Canonical piecewise–linear ap–proximations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 39, no. 8, pp. 697–699, 1992. Doi: 10.1109/81.168933.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Zeroual, N. Messai, S. Kechida, F. Hamdi. A piecewise switched linear approach for traffic flow modeling. International Journal of Automation and Computing, vol. 14, no. 6, pp. 729–741, 2017. Doi: 10.1007/s11633–017–1060–4.

    Article  Google Scholar 

  13. X. Feng, K. A. Loparo, Y. Ji, H. J. Chizeck. Stochastic stability properties of jump linear systems. IEEE transactions on Automatic Control, vol. 37, no. 1, pp. 38–53, 1992. Doi: 10.1109/9.109637.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Doucet, N. J. Gordon, V. Krishnamurthy. Particle filters for state estimation of jump markov linear systems. IEEE Transactions on signal processing, vol. 49, no. 3, pp. 613–624, 2001. DOI: 10.1109/78.905890.

    Article  Google Scholar 

  15. A. Bemporad, M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica, vol. 35, no. 3, pp. 407–427, 1999. DOI: 10.1016/S0005–1098(98) 00178–2.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. D. Schutter, T. Van den Boom. Model predictive control for max–min–plus–scaling discrete event systems. Automatica, vol. 37, no. 7, pp. 1049–1056, 2001. DOI: 10. 1016/S0005–1098(01)00054–1.

    Article  MATH  Google Scholar 

  17. W. P. M. H. Heemels, B. D. Schutter, A. Bemporad. Equivalence of hybrid dynamical models. Automatica, vol. 37, no. 7, pp. 1085–1091, 2001. DOI: 10.1016/S0005–1098(01) 00059–0.

    Article  MATH  Google Scholar 

  18. M. Baoti, F. J. Christophersen, M. Morari. Constrained optimal control of hybrid systems with a linear performance index. IEEE Transactions on Automatic Control, vol. 51, no. 12, pp. 1903–1919, 2006. DOI: 10.1109/TAC.2006. 886486.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Fiacchini, T. Alamo, I. Alvarado, E. F. Camacho. Safety verification and adaptive model predictive control of the hybrid dynamics of a fuel cell system. International Journal of Adaptive Control and Signal Processing, vol. 22, no. 2, pp. 142–160, 2008. DOI: 10.1002/(ISSN)1099–1115.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Y. Zou, S. Y. Li. Robust model predictive control for piecewise affine systems. Circuits, Systems & Signal Processing, vol. 26, no. 3, pp. 393–406, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Putz, A. Cipriano. Hybrid model predictive control for flotation plants. Minerals Engineering, vol. 70, pp. 26–35, 2015. DOI: 10.1016/j.mineng.2014.08.013.

    Article  Google Scholar 

  22. A. Makhorin. GLPK (GNU Linear Programming Kit) Users Guide, 2003.

    Google Scholar 

  23. IBM ILOG. Cplex optimization studio cplex user's manual, 2015.

  24. XPRESS–MP User Guide. Dash Associates. Blisworth House, Blisworth, Northants, UK, 1997.

  25. V. Kumar, K. P. S. Rana, J. Kumar, P. Mishra, S. Nair. A robust fractional order fuzzy p + fuzzy i+ fuzzy D controller for nonlinear and uncertain system. International Journal of Automation and Computing, vol. 14, no. 4, pp. 474–488, 2017. DOI: 10.1007/s11633–016–0981–7.

    Article  Google Scholar 

  26. E. H. Mamdani, S. Assilian. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man–machine Studies, vol. 7, no. 1, pp. 1–13, 1975. DOI: 10.1016/S0020–7373(75)80002–2.

    Article  MATH  Google Scholar 

  27. C. L. Zhang, Y. P. Xu, Z. J. Xu, J. He, J. Wang, J. H. Adu. A fuzzy neural network based dynamic data allocation model on heterogeneous multi–GPUs for large–scale computations. International Journal of Automation and Computing, vol. 15, no. 2, pp. 181–193, 2018. DOI: 10.1007/s11633–018–1120–4.

    Article  Google Scholar 

  28. L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics, vol. SMC–3, no. 1, pp. 28–44, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Ö. Efe. Fuzzy variable structure control of a class of nonlinear sampled–data systems. Journal of Dynamical and Control Systems, vol. 9, no. 2, pp. 233–256, 2003. DOI: 10.1023/A:1023237722307.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. J. Ross. Fuzzy Logic with Engineering Applications, New York, USA: John Wiley & Sons, 2009.

    Google Scholar 

  31. R. Be Abdennour, M. Ksouri, G. Favier. Application of fuzzy logic to the on–line adjustment of the parameters of a generalized predictive controller. Intelligent Automation & Soft Computing, vol. 4, no. 3, pp. 197–213, 1998.

    Article  Google Scholar 

  32. G. Ferrari–Trecate, M. Muselli, D. Liberati, M. Morari. A clustering technique for the identification of piecewise affine systems. Automatica, vol. 39, no. 2, pp. 205–217, 2003. DOI: 10.1016/S0005–1098(02)00224–8.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Bemporad, A. Garulli, S. Paoletti, A. Vicino. A bounded–error approach to piecewise affine system identification. IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1567–1580, 2005. DOI: 10.1109/TAC.2005. 856667.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Bako, S. Lecoeuche. A sparse optimization approach to state observer design for switched linear systems. Systems and Control Letters, vol. 62, no. 2, pp. 143–151, 2013. DOI: 10.1016/j.sysconle.2012.11.017.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Bemporad, A. Garulli, S. Paoletti, A. Vicino. A greedy approach to identification of piecewise affine models. In Proceedings of International Workshop on Hybrid Systems: Computation and Control, Prague, Czech Republic, pp. 97–112, 2003.

    Chapter  MATH  Google Scholar 

  36. A. L. Juloski, S. Weiland, W. P. M. H. Heemels. A bayesian approach to identification of hybrid systems. IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1520–1533, 2005. DOI: 10.1109/TAC.2005.856649.

    Article  MathSciNet  MATH  Google Scholar 

  37. Z. Lassoued, K. Abderrahim. New results on PWARX model identification based on clustering approach. International Journal of Automation and Computing, vol. 11, no. 2, pp. 180–188, 2014. DOI: 10.1007/s11633–014–0779–4.

    Article  Google Scholar 

  38. L. Grune, J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms, Switzerland: Springer, 2011.

    Book  MATH  Google Scholar 

  39. H. Gouta, S. HadSaid, F. M'sahli. Predictive and backstepping control of double tank process: a comparative study. IETE Technical Review, vol. 33, no. 2, pp. 137–147, 2016. DOI: 10.1080/02564602.2015.1052580.

    Article  Google Scholar 

  40. J. M. Maciejowski. Predictive Control with Constraints, Harlow, UK: Prentice Hall, 2000.

    MATH  Google Scholar 

  41. W. P. M. H. Heemels, B. DeSchutter, A. Bemporad. On the equivalence of classes of hybrid dynamical models. In Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, USA, pp. 364–369, 2001.

    Google Scholar 

  42. F. D. Torrisi, A. Bemporad. Hysdel–a tool for generating computational hybrid models for analysis and synthesisproblems. IEEE Transactions on Control Systems Technology, vol. 12, no. 2, pp. 235–249, 2004. DOI: 10.1109/TCST. 2004.824309.

    Article  Google Scholar 

  43. B. Pregelj, S. Gerksic. Hybrid explicit model predictive control of a nonlinear process approximated with a piecewise affine model. Journal of Process Control, vol. 20, no. 7, pp. 832–839, 2010. DOI: 10.1016/j.jprocont.2010.05.002.

    Article  Google Scholar 

  44. A. Bemporad, D. M. del Pena. Multiobjective model predictive control. Automatica, vol. 45, no. 12, pp. 2823–2830, 2009. DOI: 10.1016/j.automatica.2009.09.032.

    Article  MathSciNet  MATH  Google Scholar 

  45. F. B. Aicha, F. Bouani, M. Ksouri. A multivariable multiobjective predictive controller. International Journal of Applied Mathematics and Computer Science, vol. 23, no. 1, pp. 355, 2013. DOI: 10.2478/amcs–2013–0004.

    Google Scholar 

  46. J. Jantzen. Foundations of Fuzzy Control: A Practical Approach, 2nd ed., New York, USA: Wiley, 2013.

    Book  Google Scholar 

  47. L. P. Guo, J. Y. Hung, R. M. Nelms. Evaluation of DSPbased PID and fuzzy controllers for DC–DC converters. IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2237–2248, 2009. DOI: 10.1109/TIE.2009.2016955.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Yahya.

Additional information

Recommended by Associate Editor Yi Cao

Olfa Yahya received the B. Eng. degree in electrical-automatic engineering from the ENIG (National Engineering School of Gabes), Tunisia in 2014. Currently, she is a Ph. D. degree candidate in electrical engineering at the ENIG and a member of LACONPRI (Laboratory of Numerical Control of Industrial Processes) at the ENIG, Tunisia from 2014.

Her research interests include hybrid system identification and control.

Zeineb Lassoued received the B. Eng. degree in electrical-automatic engineering, the M. Eng. degree in automatic and smart techniques and the Ph. D. degree in electrical engineering from the ENIG, Tunisia in 2010, 2011 and 2015, respectively. Currently, she is an associate professor at the ENIG and a member of LACONPRI at the ENIG, Tunisia from 2010.

Her research interests include hybrid system identification and control.

Kamel Abderrahim received the B. Eng. degree in electrical engineering from the ENIG, Tunisia in 1992, and the M. Eng. degree in automatic control from the ES-STT (Higher School of Sciences and Techniques of Tunis), Tunisia in 1995, and the Ph. D. degree in electrical engineering from the ENIT (National School of Engineers of Tunis), Tunisia in 2000, and the habilitation in electrical engineering from the University of Gabes, Tunisia in 2009. He joined the ENIG as an assistant professor in 2000, and now he works as a professor at the ENIG. He is a member of LACONPRI at the ENIG from 1995. From 2002 to 2005, he was the director of the Electrical Engineering Department at the ENIG, and From 2006 to 2011, he was the director of the IS-SIG (Higher Institute of Industrial Systems of Gabes), Tunisia.

His research interests include nonlinear process modelling, identification and control.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahya, O., Lassoued, Z. & Abderrahim, K. Predictive Control Based on Fuzzy Supervisor for PWARX Hybrid Model. Int. J. Autom. Comput. 16, 683–695 (2019). https://doi.org/10.1007/s11633-018-1148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-018-1148-5

Keywords

Navigation